Cargando…
Network Visualization and Pyramidal Feature Comparison for Ablative Treatability Classification Using Digitized Cervix Images
Uterine cervical cancer is a leading cause of women’s mortality worldwide. Cervical tissue ablation is an effective surgical excision of high grade lesions that are determined to be precancerous. Our prior work on the Automated Visual Examination (AVE) method demonstrated a highly effective techniqu...
Autores principales: | Guo, Peng, Xue, Zhiyun, Jeronimo, Jose, Gage, Julia C., Desai, Kanan T., Befano, Brian, García, Francisco, Long, L. Rodney, Schiffman, Mark, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957626/ https://www.ncbi.nlm.nih.gov/pubmed/33804469 http://dx.doi.org/10.3390/jcm10050953 |
Ejemplares similares
-
Deep Metric Learning for Cervical Image Classification
por: PAL, ANABIK, et al.
Publicado: (2021) -
The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
por: Desai, Kanan T., et al.
Publicado: (2021) -
Cross-Dataset Evaluation of Deep Learning Networks for Uterine Cervix Segmentation
por: Guo, Peng, et al.
Publicado: (2020) -
Ensemble Deep Learning for Cervix Image Selection toward Improving Reliability in Automated Cervical Precancer Screening
por: Guo, Peng, et al.
Publicado: (2020) -
Unsupervised Deep Learning Registration of Uterine Cervix Sequence Images
por: Guo, Peng, et al.
Publicado: (2022)