Cargando…

DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation

This paper focuses on 6Dof object pose estimation from a single RGB image. We tackle this challenging problem with a two-stage optimization framework. More specifically, we first introduce a translation estimation module to provide an initial translation based on an estimated depth map. Then, a pose...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Lei, Wang, Xiaojuan, He, Mingshu, Wang, Jingyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957651/
https://www.ncbi.nlm.nih.gov/pubmed/33804518
http://dx.doi.org/10.3390/s21051692
_version_ 1783664697920192512
author Jin, Lei
Wang, Xiaojuan
He, Mingshu
Wang, Jingyue
author_facet Jin, Lei
Wang, Xiaojuan
He, Mingshu
Wang, Jingyue
author_sort Jin, Lei
collection PubMed
description This paper focuses on 6Dof object pose estimation from a single RGB image. We tackle this challenging problem with a two-stage optimization framework. More specifically, we first introduce a translation estimation module to provide an initial translation based on an estimated depth map. Then, a pose regression module combines the ROI (Region of Interest) and the original image to predict the rotation and refine the translation. Compared with previous end-to-end methods that directly predict rotations and translations, our method can utilize depth information as weak guidance and significantly reduce the searching space for the subsequent module. Furthermore, we design a new loss function function for symmetric objects, an approach that has handled such exceptionally difficult cases in prior works. Experiments show that our model achieves state-of-the-art object pose estimation for the YCB- video dataset (Yale-CMU-Berkeley).
format Online
Article
Text
id pubmed-7957651
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79576512021-03-16 DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation Jin, Lei Wang, Xiaojuan He, Mingshu Wang, Jingyue Sensors (Basel) Article This paper focuses on 6Dof object pose estimation from a single RGB image. We tackle this challenging problem with a two-stage optimization framework. More specifically, we first introduce a translation estimation module to provide an initial translation based on an estimated depth map. Then, a pose regression module combines the ROI (Region of Interest) and the original image to predict the rotation and refine the translation. Compared with previous end-to-end methods that directly predict rotations and translations, our method can utilize depth information as weak guidance and significantly reduce the searching space for the subsequent module. Furthermore, we design a new loss function function for symmetric objects, an approach that has handled such exceptionally difficult cases in prior works. Experiments show that our model achieves state-of-the-art object pose estimation for the YCB- video dataset (Yale-CMU-Berkeley). MDPI 2021-03-01 /pmc/articles/PMC7957651/ /pubmed/33804518 http://dx.doi.org/10.3390/s21051692 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jin, Lei
Wang, Xiaojuan
He, Mingshu
Wang, Jingyue
DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
title DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
title_full DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
title_fullStr DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
title_full_unstemmed DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
title_short DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
title_sort drnet: a depth-based regression network for 6d object pose estimation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957651/
https://www.ncbi.nlm.nih.gov/pubmed/33804518
http://dx.doi.org/10.3390/s21051692
work_keys_str_mv AT jinlei drnetadepthbasedregressionnetworkfor6dobjectposeestimation
AT wangxiaojuan drnetadepthbasedregressionnetworkfor6dobjectposeestimation
AT hemingshu drnetadepthbasedregressionnetworkfor6dobjectposeestimation
AT wangjingyue drnetadepthbasedregressionnetworkfor6dobjectposeestimation