Cargando…
DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
This paper focuses on 6Dof object pose estimation from a single RGB image. We tackle this challenging problem with a two-stage optimization framework. More specifically, we first introduce a translation estimation module to provide an initial translation based on an estimated depth map. Then, a pose...
Autores principales: | Jin, Lei, Wang, Xiaojuan, He, Mingshu, Wang, Jingyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957651/ https://www.ncbi.nlm.nih.gov/pubmed/33804518 http://dx.doi.org/10.3390/s21051692 |
Ejemplares similares
-
Accurate Object Pose Estimation Using Depth Only
por: Li, Mingyu, et al.
Publicado: (2018) -
Estimation of 6D Object Pose Using a 2D Bounding Box
por: Hong, Yong, et al.
Publicado: (2021) -
eGAC3D: enhancing depth adaptive convolution and depth estimation for monocular 3D object pose detection
por: Ngo, Duc Tuan, et al.
Publicado: (2022) -
DOPE++: 6D pose estimation algorithm for weakly textured objects based on deep neural networks
por: Jin, Mei, et al.
Publicado: (2022) -
6D Object Pose Estimation Based on Cross-Modality Feature Fusion
por: Jiang, Meng, et al.
Publicado: (2023)