Cargando…
Porosity Analysis of Additive Manufactured Parts Using CAQ Technology
Components produced by additive technology are implemented in various spheres of industry, such as automotive or aerospace. This manufacturing process can lead to making highly optimized parts. There is not enough information about the quality of the parts produced by additive technologies, especial...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957679/ https://www.ncbi.nlm.nih.gov/pubmed/33670918 http://dx.doi.org/10.3390/ma14051142 |
_version_ | 1783664704534609920 |
---|---|
author | Pokorný, Peter Václav, Štefan Petru, Jana Kritikos, Michaela |
author_facet | Pokorný, Peter Václav, Štefan Petru, Jana Kritikos, Michaela |
author_sort | Pokorný, Peter |
collection | PubMed |
description | Components produced by additive technology are implemented in various spheres of industry, such as automotive or aerospace. This manufacturing process can lead to making highly optimized parts. There is not enough information about the quality of the parts produced by additive technologies, especially those made from metal powder. The research in this article deals with the porosity of components produced by additive technologies. The components used for the research were manufactured by the selective laser melting (SLM) method. The shape of these components is the same as the shape used for the tensile test. The investigated parts were printed with orientation in two directions, Z and XZ with respect to the machine platform. The printing strategy was “stripe”. The material used for printing of the parts was SS 316L-0407. The printing parameters were laser power of 200 W, scanning speed of 650 mm/s, and the thickness of the layer was 50 µm. A non-destructive method was used for the components’ porosity evaluation. The scanning was performed by CT machine METROTOM 1500. The radiation parameters used for getting 3D scans were voltage 180 kV, current 900 µA, detector resolution 1024 × 1024 px, voxel size 119.43 µm, number of projections 1050, and integration time 2000 ms. This entire measurement process responds to the computer aided quality (CAQ) technology. VG studio MAX 3.0 software was used to evaluate the obtained data. The porosity of the parts with Z and XZ orientation was also evaluated for parts’ thicknesses of 1, 2, and 3 mm, respectively. It has been proven by this experimental investigation that the printing direction of the part in the additive manufacturing process under question affects its porosity. |
format | Online Article Text |
id | pubmed-7957679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79576792021-03-16 Porosity Analysis of Additive Manufactured Parts Using CAQ Technology Pokorný, Peter Václav, Štefan Petru, Jana Kritikos, Michaela Materials (Basel) Article Components produced by additive technology are implemented in various spheres of industry, such as automotive or aerospace. This manufacturing process can lead to making highly optimized parts. There is not enough information about the quality of the parts produced by additive technologies, especially those made from metal powder. The research in this article deals with the porosity of components produced by additive technologies. The components used for the research were manufactured by the selective laser melting (SLM) method. The shape of these components is the same as the shape used for the tensile test. The investigated parts were printed with orientation in two directions, Z and XZ with respect to the machine platform. The printing strategy was “stripe”. The material used for printing of the parts was SS 316L-0407. The printing parameters were laser power of 200 W, scanning speed of 650 mm/s, and the thickness of the layer was 50 µm. A non-destructive method was used for the components’ porosity evaluation. The scanning was performed by CT machine METROTOM 1500. The radiation parameters used for getting 3D scans were voltage 180 kV, current 900 µA, detector resolution 1024 × 1024 px, voxel size 119.43 µm, number of projections 1050, and integration time 2000 ms. This entire measurement process responds to the computer aided quality (CAQ) technology. VG studio MAX 3.0 software was used to evaluate the obtained data. The porosity of the parts with Z and XZ orientation was also evaluated for parts’ thicknesses of 1, 2, and 3 mm, respectively. It has been proven by this experimental investigation that the printing direction of the part in the additive manufacturing process under question affects its porosity. MDPI 2021-02-28 /pmc/articles/PMC7957679/ /pubmed/33670918 http://dx.doi.org/10.3390/ma14051142 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pokorný, Peter Václav, Štefan Petru, Jana Kritikos, Michaela Porosity Analysis of Additive Manufactured Parts Using CAQ Technology |
title | Porosity Analysis of Additive Manufactured Parts Using CAQ Technology |
title_full | Porosity Analysis of Additive Manufactured Parts Using CAQ Technology |
title_fullStr | Porosity Analysis of Additive Manufactured Parts Using CAQ Technology |
title_full_unstemmed | Porosity Analysis of Additive Manufactured Parts Using CAQ Technology |
title_short | Porosity Analysis of Additive Manufactured Parts Using CAQ Technology |
title_sort | porosity analysis of additive manufactured parts using caq technology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957679/ https://www.ncbi.nlm.nih.gov/pubmed/33670918 http://dx.doi.org/10.3390/ma14051142 |
work_keys_str_mv | AT pokornypeter porosityanalysisofadditivemanufacturedpartsusingcaqtechnology AT vaclavstefan porosityanalysisofadditivemanufacturedpartsusingcaqtechnology AT petrujana porosityanalysisofadditivemanufacturedpartsusingcaqtechnology AT kritikosmichaela porosityanalysisofadditivemanufacturedpartsusingcaqtechnology |