Cargando…
Generalizability of Deep Learning Models for Caries Detection in Near-Infrared Light Transillumination Images
Objectives: The present study aimed to train deep convolutional neural networks (CNNs) to detect caries lesions on Near-Infrared Light Transillumination (NILT) imagery obtained either in vitro or in vivo and to assess the models’ generalizability. Methods: In vitro, 226 extracted posterior permanent...
Autores principales: | Holtkamp, Agnes, Elhennawy, Karim, Cejudo Grano de Oro, José E., Krois, Joachim, Paris, Sebastian, Schwendicke, Falk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957685/ https://www.ncbi.nlm.nih.gov/pubmed/33804562 http://dx.doi.org/10.3390/jcm10050961 |
Ejemplares similares
-
Caries Detection with Near-Infrared Transillumination Using Deep Learning
por: Casalegno, F., et al.
Publicado: (2019) -
Artificial Intelligence for Caries Detection: Value of Data and
Information
por: Schwendicke, F., et al.
Publicado: (2022) -
Diagnostic Validity of Digital Imaging Fiber-Optic Transillumination (DIFOTI) and Near-Infrared Light Transillumination (NILT) for Caries in Dentine
por: Marmaneu-Menero, Ana, et al.
Publicado: (2020) -
Combined Near-Infrarred Light Transillumination and Direct Digital Radiography Increases Diagnostic In Approximal Caries
por: Melo, Maria, et al.
Publicado: (2019) -
In vivo performance of near-infrared light transillumination for dentine proximal caries detection in permanent teeth
por: Dündar, Ayşe, et al.
Publicado: (2020)