Cargando…
Granulocyte Colony Stimulating Factor Expression in Breast Cancer and Its Association with Carbonic Anhydrase IX and Immune Checkpoints
SIMPLE SUMMARY: Preclinical studies suggest that interactions between granulocyte colony-stimulating factor (G-CSF) and hypoxia-induced carbonic anhydrase IX regulate the trafficking and function of immune cells in the tumour microenvironment. We investigated the clinical significance of this crosst...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957699/ https://www.ncbi.nlm.nih.gov/pubmed/33804486 http://dx.doi.org/10.3390/cancers13051022 |
Sumario: | SIMPLE SUMMARY: Preclinical studies suggest that interactions between granulocyte colony-stimulating factor (G-CSF) and hypoxia-induced carbonic anhydrase IX regulate the trafficking and function of immune cells in the tumour microenvironment. We investigated the clinical significance of this crosstalk by analyzing the protein expression of G-CSF and macrophage markers by immunohistochemistry on a well-characterized tissue microarray series of invasive breast cancers. We report that high expression of G-CSF on breast carcinoma cells is linked with significantly improved survival in an important group of breast cancers that do not respond to hormonal therapy. These tumours were infiltrated by immune cells expressing biomarkers that can be targeted with immune checkpoint inhibitor drugs. In contrast, carbonic anhydrase IX expression was associated with unfavourable outcomes. ABSTRACT: Purpose: Granulocyte colony-stimulating factor (G-CSF) and hypoxia modulate the tumour immune microenvironment. In model systems, hypoxia-induced carbonic anhydrase IX (CAIX) has been associated with G-CSF and immune responses, including M2 polarization of macrophages. We investigated whether these associations exist in human breast cancer specimens, their relation to breast cancer subtypes, and clinical outcome. Methods: Using validated protocols and prespecified scoring methodology, G-CSF expression on carcinoma cells and CD163 expression on tumour-associated macrophages were assayed by immunohistochemistry and applied to a tissue microarray series of 2960 primary excision specimens linked to clinicopathologic, biomarker, and outcome data. Results: G-CSF(high) expression showed a significant positive association with ER negativity, HER2 positivity, presence of CD163+ M2 macrophages, and CAIX expression. In univariate analysis, G-CSF(high) phenotype was associated with improved survival in non-luminal cases, although the CAIX+ subset had a significantly adverse prognosis. A significant positive association was observed between immune checkpoint biomarkers on tumour-infiltrating lymphocytes and both G-CSF- and CAIX-expressing carcinoma cells. Immune checkpoint biomarkers correlated significantly with favourable prognosis in G-CSF(high)/non-luminal cases independent of standard clinicopathological features. Conclusions: The prognostic associations linking G-CSF to immune biomarkers and CAIX strongly support their immunomodulatory roles in the tumour microenvironment. |
---|