Cargando…
A Self-Healing Ionic Liquid-Based Ionically Cross-Linked Gel Polymer Electrolyte for Electrochromic Devices
An ionic liquid-based ionically cross-linked gel polymer electrolyte (GPE-ILs) was successfully synthesized using acrylic acid, 2-diethylaminoethyl methacrylate, methyl methacrylate, and ionic liquids. Electrochromic devices (ECDs) with an architecture of glass/FTO/WO(3)/GPE-ILs/FTO/glass were fabri...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957721/ https://www.ncbi.nlm.nih.gov/pubmed/33673624 http://dx.doi.org/10.3390/polym13050742 |
Sumario: | An ionic liquid-based ionically cross-linked gel polymer electrolyte (GPE-ILs) was successfully synthesized using acrylic acid, 2-diethylaminoethyl methacrylate, methyl methacrylate, and ionic liquids. Electrochromic devices (ECDs) with an architecture of glass/FTO/WO(3)/GPE-ILs/FTO/glass were fabricated by a laminating technology. The devices showed performances of large optical modulation of 49.9% at 650 nm, short switching times with the coloration time (tc) of 7 s and the bleaching time (tb) of 4 s, high coloration efficiency of 96.2 cm(2) C(−1), and cycling stability of 200 cycles. The GPE-ILs exhibits high ionic conductivity, superior thermal stability and good self-healing ability. GPE-ILs demonstrates an ionic conductivity of 3.19 × 10(−3) S cm(−1) at 25 °C and the same ions migration behaviors with most widely used liquid electrolyte between −10 and 80 °C maintains more than 80% of its tensile strength after self-healing and received only 5% weight loss at 300 °C. |
---|