Cargando…
A Comparative Study of Window Size and Channel Arrangement on EEG-Emotion Recognition Using Deep CNN
Emotion recognition based on electroencephalograms has become an active research area. Yet, identifying emotions using only brainwaves is still very challenging, especially the subject-independent task. Numerous studies have tried to propose methods to recognize emotions, including machine learning...
Autores principales: | Keelawat, Panayu, Thammasan, Nattapong, Numao, Masayuki, Kijsirikul, Boonserm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957771/ https://www.ncbi.nlm.nih.gov/pubmed/33804366 http://dx.doi.org/10.3390/s21051678 |
Ejemplares similares
-
Familiarity effects in EEG-based emotion recognition
por: Thammasan, Nattapong, et al.
Publicado: (2016) -
Cross-Frequency Power-Power Coupling Analysis: A Useful Cross-Frequency Measure to Classify ICA-Decomposed EEG
por: Thammasan, Nattapong, et al.
Publicado: (2020) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
A Multi-Column CNN Model for Emotion Recognition from EEG Signals
por: Yang, Heekyung, et al.
Publicado: (2019) -
Optimizing 1D-CNN-Based Emotion Recognition Process through Channel and Feature Selection from EEG Signals
por: Aldawsari, Haya, et al.
Publicado: (2023)