Cargando…

Colloidal Stability and Cytotoxicity of Polydopamine-Conjugated Gold Nanorods against Prostate Cancer Cell Lines

Prostate cancer is one of the most common cancers in men. Cell invasion is an important step in the process of cancer metastasis. Herein, gold nanorods (GNRs) and polyethylene glycol (PEG)-coated GNRs were conjugated with polydopamine (PDA). The PDA-nanoconjugates demonstrated excellent colloidal st...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmoud, Nouf N., Aqabani, Hakam, Hikmat, Suhair, Abu-Dahab, Rana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957783/
https://www.ncbi.nlm.nih.gov/pubmed/33670890
http://dx.doi.org/10.3390/molecules26051299
Descripción
Sumario:Prostate cancer is one of the most common cancers in men. Cell invasion is an important step in the process of cancer metastasis. Herein, gold nanorods (GNRs) and polyethylene glycol (PEG)-coated GNRs were conjugated with polydopamine (PDA). The PDA-nanoconjugates demonstrated excellent colloidal stability upon lyophilization and dispersion in cell culture media with or without the addition of fetal bovine albumin (FBS), compared to unconjugated GNRs. PDA-nanoconjugates exhibited a considerable cytotoxicity against DU-145 and PC3 prostate cancer cell lines over a concentration range of 48 μg/mL–12 μg/mL, while they were biocompatible over a concentration range of 3.0 μg/mL–0.185 μg/mL. Furthermore, PDA-nanoconjugates demonstrated possible anti-invasion activity towards prostate cancer cell lines, particularly DU-145 cell line, by reducing cell migration and cell adhesion properties. The PDA-nanoconjugates could be considered a promising nano-platform toward cancer treatment by reducing the invasion activity; it could also be considered a drug delivery system for chemotherapeutic agents.