Cargando…
AR3D: Attention Residual 3D Network for Human Action Recognition
At present, in the field of video-based human action recognition, deep neural networks are mainly divided into two branches: the 2D convolutional neural network (CNN) and 3D CNN. However, 2D CNN’s temporal and spatial feature extraction processes are independent of each other, which means that it is...
Autores principales: | Dong, Min, Fang, Zhenglin, Li, Yongfa, Bi, Sheng, Chen, Jiangcheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957788/ https://www.ncbi.nlm.nih.gov/pubmed/33670835 http://dx.doi.org/10.3390/s21051656 |
Ejemplares similares
-
Two-Level Attention Module Based on Spurious-3D Residual Networks for Human Action Recognition
por: Chen, Bo, et al.
Publicado: (2023) -
High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network
por: Chen, Jiangcheng, et al.
Publicado: (2020) -
Spatiotemporal Interaction Residual Networks with Pseudo3D for Video Action Recognition
por: Chen, Jianyu, et al.
Publicado: (2020) -
3D network with channel excitation and knowledge distillation for action recognition
por: Hu, Zhengping, et al.
Publicado: (2023) -
Multi-Scale Attention 3D Convolutional Network for Multimodal Gesture Recognition
por: Chen, Huizhou, et al.
Publicado: (2022)