Cargando…

Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation

BACKGROUND & AIMS: Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associ...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwerbel, Kristin, Kamitz, Anne, Krahmer, Natalie, Hallahan, Nicole, Jähnert, Markus, Gottmann, Pascal, Lebek, Sandra, Schallschmidt, Tanja, Arends, Danny, Schumacher, Fabian, Kleuser, Burkhard, Haltenhof, Tom, Heyd, Florian, Gancheva, Sofiya, Broman, Karl W., Roden, Michael, Joost, Hans-Georg, Chadt, Alexandra, Al-Hasani, Hadi, Vogel, Heike, Jonas, Wenke, Schümann, Annette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957830/
https://www.ncbi.nlm.nih.gov/pubmed/32376415
http://dx.doi.org/10.1016/j.jhep.2020.04.031
_version_ 1783664738588164096
author Schwerbel, Kristin
Kamitz, Anne
Krahmer, Natalie
Hallahan, Nicole
Jähnert, Markus
Gottmann, Pascal
Lebek, Sandra
Schallschmidt, Tanja
Arends, Danny
Schumacher, Fabian
Kleuser, Burkhard
Haltenhof, Tom
Heyd, Florian
Gancheva, Sofiya
Broman, Karl W.
Roden, Michael
Joost, Hans-Georg
Chadt, Alexandra
Al-Hasani, Hadi
Vogel, Heike
Jonas, Wenke
Schümann, Annette
author_facet Schwerbel, Kristin
Kamitz, Anne
Krahmer, Natalie
Hallahan, Nicole
Jähnert, Markus
Gottmann, Pascal
Lebek, Sandra
Schallschmidt, Tanja
Arends, Danny
Schumacher, Fabian
Kleuser, Burkhard
Haltenhof, Tom
Heyd, Florian
Gancheva, Sofiya
Broman, Karl W.
Roden, Michael
Joost, Hans-Georg
Chadt, Alexandra
Al-Hasani, Hadi
Vogel, Heike
Jonas, Wenke
Schümann, Annette
author_sort Schwerbel, Kristin
collection PubMed
description BACKGROUND & AIMS: Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association. METHODS: Recombinant congenic mice carrying 5.3 Mbp of Ltg/NZO were fed a high-fat diet and characterized for liver fat. Bioinformatic analysis, mRNA profiles and electrophoretic mobility shift assays were performed to identify genes responsible for the Ltg/NZO phenotype. Candidate genes were manipulated in vivo by injecting specific microRNAs into C57BL/6 mice. Pulldown coupled with mass spectrometry-based proteomics and immunoprecipitation were performed to identify interaction partners of IFGGA2. RESULTS: Through positional cloning, we identified 2 immunity-related GTPases (Ifgga2, Ifgga4) that prevent hepatic lipid storage. Expression of both murine genes and the human orthologue IRGM was significantly lower in fatty livers. Accordingly, liver-specific suppression of either Ifgga2 or Ifgga4 led to a 3–4-fold greater increase in hepatic fat content. In the liver of low-fat diet-fed mice, IFGGA2 localized to endosomes/lysosomes, while on a high-fat diet it associated with lipid droplets. Pulldown experiments and proteomics identified the lipase ATGL as a binding partner of IFGGA2 which was confirmed by co-immunoprecipitation. Both proteins partially co-localized with the autophagic marker LC3B. Ifgga2 suppression in hepatocytes reduced the amount of LC3B-II, whereas overexpression of Ifgga2 increased the association of LC3B with lipid droplets and decreased triglyceride storage. CONCLUSION: IFGGA2 interacts with ATGL and protects against hepatic steatosis, most likely by enhancing the binding of LC3B to lipid droplets.
format Online
Article
Text
id pubmed-7957830
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-79578302021-03-15 Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation Schwerbel, Kristin Kamitz, Anne Krahmer, Natalie Hallahan, Nicole Jähnert, Markus Gottmann, Pascal Lebek, Sandra Schallschmidt, Tanja Arends, Danny Schumacher, Fabian Kleuser, Burkhard Haltenhof, Tom Heyd, Florian Gancheva, Sofiya Broman, Karl W. Roden, Michael Joost, Hans-Georg Chadt, Alexandra Al-Hasani, Hadi Vogel, Heike Jonas, Wenke Schümann, Annette J Hepatol Article BACKGROUND & AIMS: Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association. METHODS: Recombinant congenic mice carrying 5.3 Mbp of Ltg/NZO were fed a high-fat diet and characterized for liver fat. Bioinformatic analysis, mRNA profiles and electrophoretic mobility shift assays were performed to identify genes responsible for the Ltg/NZO phenotype. Candidate genes were manipulated in vivo by injecting specific microRNAs into C57BL/6 mice. Pulldown coupled with mass spectrometry-based proteomics and immunoprecipitation were performed to identify interaction partners of IFGGA2. RESULTS: Through positional cloning, we identified 2 immunity-related GTPases (Ifgga2, Ifgga4) that prevent hepatic lipid storage. Expression of both murine genes and the human orthologue IRGM was significantly lower in fatty livers. Accordingly, liver-specific suppression of either Ifgga2 or Ifgga4 led to a 3–4-fold greater increase in hepatic fat content. In the liver of low-fat diet-fed mice, IFGGA2 localized to endosomes/lysosomes, while on a high-fat diet it associated with lipid droplets. Pulldown experiments and proteomics identified the lipase ATGL as a binding partner of IFGGA2 which was confirmed by co-immunoprecipitation. Both proteins partially co-localized with the autophagic marker LC3B. Ifgga2 suppression in hepatocytes reduced the amount of LC3B-II, whereas overexpression of Ifgga2 increased the association of LC3B with lipid droplets and decreased triglyceride storage. CONCLUSION: IFGGA2 interacts with ATGL and protects against hepatic steatosis, most likely by enhancing the binding of LC3B to lipid droplets. 2020-05-04 2020-10 /pmc/articles/PMC7957830/ /pubmed/32376415 http://dx.doi.org/10.1016/j.jhep.2020.04.031 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Schwerbel, Kristin
Kamitz, Anne
Krahmer, Natalie
Hallahan, Nicole
Jähnert, Markus
Gottmann, Pascal
Lebek, Sandra
Schallschmidt, Tanja
Arends, Danny
Schumacher, Fabian
Kleuser, Burkhard
Haltenhof, Tom
Heyd, Florian
Gancheva, Sofiya
Broman, Karl W.
Roden, Michael
Joost, Hans-Georg
Chadt, Alexandra
Al-Hasani, Hadi
Vogel, Heike
Jonas, Wenke
Schümann, Annette
Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation
title Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation
title_full Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation
title_fullStr Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation
title_full_unstemmed Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation
title_short Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation
title_sort immunity-related gtpase induces lipophagy to prevent excess hepatic lipid accumulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957830/
https://www.ncbi.nlm.nih.gov/pubmed/32376415
http://dx.doi.org/10.1016/j.jhep.2020.04.031
work_keys_str_mv AT schwerbelkristin immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT kamitzanne immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT krahmernatalie immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT hallahannicole immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT jahnertmarkus immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT gottmannpascal immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT lebeksandra immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT schallschmidttanja immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT arendsdanny immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT schumacherfabian immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT kleuserburkhard immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT haltenhoftom immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT heydflorian immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT ganchevasofiya immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT bromankarlw immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT rodenmichael immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT joosthansgeorg immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT chadtalexandra immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT alhasanihadi immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT vogelheike immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT jonaswenke immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation
AT schumannannette immunityrelatedgtpaseinduceslipophagytopreventexcesshepaticlipidaccumulation