Cargando…

Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances

This article introduces a bioinspired, cicada wing-like surface-enhanced Raman scattering (SERS) substrate based on template-stripped crossed surface relief grating (TS-CSRG). The substrate is polarization-independent, has tunable nanofeatures and can be fabricated in a cleanroom-free environment vi...

Descripción completa

Detalles Bibliográficos
Autores principales: Nair, Srijit, Gomez-Cruz, Juan, Ascanio, Gabriel, Docoslis, Aristides, Sabat, Ribal Georges, Escobedo, Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957863/
https://www.ncbi.nlm.nih.gov/pubmed/33801222
http://dx.doi.org/10.3390/s21051699
_version_ 1783664744857600000
author Nair, Srijit
Gomez-Cruz, Juan
Ascanio, Gabriel
Docoslis, Aristides
Sabat, Ribal Georges
Escobedo, Carlos
author_facet Nair, Srijit
Gomez-Cruz, Juan
Ascanio, Gabriel
Docoslis, Aristides
Sabat, Ribal Georges
Escobedo, Carlos
author_sort Nair, Srijit
collection PubMed
description This article introduces a bioinspired, cicada wing-like surface-enhanced Raman scattering (SERS) substrate based on template-stripped crossed surface relief grating (TS-CSRG). The substrate is polarization-independent, has tunable nanofeatures and can be fabricated in a cleanroom-free environment via holographic exposure followed by template-stripping using a UV-curable resin. The bioinspired nanostructures in the substrate are strategically designed to minimize the reflection of light for wavelengths shorter than their periodicity, promoting enhanced plasmonic regions for the Raman excitation wavelength at 632.8 nm over a large area. The grating pitch that enables an effective SERS signal is studied using Rhodamine 6G, with enhancement factors of the order of 1 × 10(4). Water contact angle measurements reveal that the TS-CSRGs are equally hydrophobic to cicada wings, providing them with potential self-cleaning and bactericidal properties. Finite-difference time-domain simulations are used to validate the nanofabrication parameters and to further confirm the polarization-independent electromagnetic field enhancement of the nanostructures. As a real-world application, label-free detection of melamine up to 1 ppm, the maximum concentration of the contaminant in food permitted by the World Health Organization, is demonstrated. The new bioinspired functional TS-CSRG SERS substrate holds great potential as a large-area, label-free SERS-active substrate for medical and biochemical sensing applications.
format Online
Article
Text
id pubmed-7957863
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79578632021-03-16 Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances Nair, Srijit Gomez-Cruz, Juan Ascanio, Gabriel Docoslis, Aristides Sabat, Ribal Georges Escobedo, Carlos Sensors (Basel) Communication This article introduces a bioinspired, cicada wing-like surface-enhanced Raman scattering (SERS) substrate based on template-stripped crossed surface relief grating (TS-CSRG). The substrate is polarization-independent, has tunable nanofeatures and can be fabricated in a cleanroom-free environment via holographic exposure followed by template-stripping using a UV-curable resin. The bioinspired nanostructures in the substrate are strategically designed to minimize the reflection of light for wavelengths shorter than their periodicity, promoting enhanced plasmonic regions for the Raman excitation wavelength at 632.8 nm over a large area. The grating pitch that enables an effective SERS signal is studied using Rhodamine 6G, with enhancement factors of the order of 1 × 10(4). Water contact angle measurements reveal that the TS-CSRGs are equally hydrophobic to cicada wings, providing them with potential self-cleaning and bactericidal properties. Finite-difference time-domain simulations are used to validate the nanofabrication parameters and to further confirm the polarization-independent electromagnetic field enhancement of the nanostructures. As a real-world application, label-free detection of melamine up to 1 ppm, the maximum concentration of the contaminant in food permitted by the World Health Organization, is demonstrated. The new bioinspired functional TS-CSRG SERS substrate holds great potential as a large-area, label-free SERS-active substrate for medical and biochemical sensing applications. MDPI 2021-03-02 /pmc/articles/PMC7957863/ /pubmed/33801222 http://dx.doi.org/10.3390/s21051699 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Nair, Srijit
Gomez-Cruz, Juan
Ascanio, Gabriel
Docoslis, Aristides
Sabat, Ribal Georges
Escobedo, Carlos
Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances
title Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances
title_full Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances
title_fullStr Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances
title_full_unstemmed Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances
title_short Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances
title_sort cicada wing inspired template-stripped sers active 3d metallic nanostructures for the detection of toxic substances
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957863/
https://www.ncbi.nlm.nih.gov/pubmed/33801222
http://dx.doi.org/10.3390/s21051699
work_keys_str_mv AT nairsrijit cicadawinginspiredtemplatestrippedsersactive3dmetallicnanostructuresforthedetectionoftoxicsubstances
AT gomezcruzjuan cicadawinginspiredtemplatestrippedsersactive3dmetallicnanostructuresforthedetectionoftoxicsubstances
AT ascaniogabriel cicadawinginspiredtemplatestrippedsersactive3dmetallicnanostructuresforthedetectionoftoxicsubstances
AT docoslisaristides cicadawinginspiredtemplatestrippedsersactive3dmetallicnanostructuresforthedetectionoftoxicsubstances
AT sabatribalgeorges cicadawinginspiredtemplatestrippedsersactive3dmetallicnanostructuresforthedetectionoftoxicsubstances
AT escobedocarlos cicadawinginspiredtemplatestrippedsersactive3dmetallicnanostructuresforthedetectionoftoxicsubstances