Cargando…
On the Quantification of Model Uncertainty: A Bayesian Perspective
Issues of model selection have dominated the theoretical and applied statistical literature for decades. Model selection methods such as ridge regression, the lasso, and the elastic net have replaced ad hoc methods such as stepwise regression as a means of model selection. In the end, however, these...
Autor principal: | Kaplan, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958145/ https://www.ncbi.nlm.nih.gov/pubmed/33721184 http://dx.doi.org/10.1007/s11336-021-09754-5 |
Ejemplares similares
-
Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments
por: Kaplan, David, et al.
Publicado: (2022) -
Sparsifying priors for Bayesian uncertainty quantification in model discovery
por: Hirsh, Seth M., et al.
Publicado: (2022) -
Bayesian calibration, process modeling and uncertainty quantification in biotechnology
por: Helleckes, Laura Marie, et al.
Publicado: (2022) -
Value of Information: Sensitivity Analysis and Research Design in Bayesian Evidence Synthesis
por: Jackson, Christopher, et al.
Publicado: (2019) -
Objective Bayesian Edge Screening and Structure Selection for Ising Networks
por: Marsman, M., et al.
Publicado: (2022)