Cargando…

Predicting transcriptional responses to cold stress across plant species

Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Xiaoxi, Liang, Zhikai, Dai, Xiuru, Zhang, Yang, Mahboub, Samira, Ngu, Daniel W., Roston, Rebecca L., Schnable, James C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958178/
https://www.ncbi.nlm.nih.gov/pubmed/33658387
http://dx.doi.org/10.1073/pnas.2026330118
Descripción
Sumario:Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes.