Cargando…
The Role of Network Science in Glioblastoma
SIMPLE SUMMARY: Knowledge extraction from cancer genomic studies is continuously challenged by the fast-growing technological advances generating high-dimensional data. Network science is a promising discipline to cope with the resulting complex and heterogeneous datasets, enabling the disclosure of...
Autores principales: | Lopes, Marta B., Martins, Eduarda P., Vinga, Susana, Costa, Bruno M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958335/ https://www.ncbi.nlm.nih.gov/pubmed/33801334 http://dx.doi.org/10.3390/cancers13051045 |
Ejemplares similares
-
Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data
por: Lopes, Marta B., et al.
Publicado: (2020) -
TCox: Correlation-Based Regularization Applied to Colorectal Cancer Survival Data
por: Peixoto, Carolina, et al.
Publicado: (2020) -
Kidney Cancer Biomarker Selection Using Regularized Survival Models
por: Peixoto, Carolina, et al.
Publicado: (2022) -
Chronic Stress Does Not Influence the Survival of Mouse Models of Glioblastoma
por: Lopes, Marta, et al.
Publicado: (2022) -
Twiner: correlation-based regularization for identifying common cancer gene signatures
por: Lopes, Marta B., et al.
Publicado: (2019)