Cargando…
Integration and transfer learning of single-cell transcriptomes via cFIT
Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods arise to measure distinct cellular modalities, a...
Autores principales: | Peng, Minshi, Li, Yue, Wamsley, Brie, Wei, Yuting, Roeder, Kathryn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958425/ https://www.ncbi.nlm.nih.gov/pubmed/33658382 http://dx.doi.org/10.1073/pnas.2024383118 |
Ejemplares similares
-
Cell type hierarchy reconstruction via reconciliation of multi-resolution cluster tree
por: Peng, Minshi, et al.
Publicado: (2021) -
Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT
por: Du, Jin-Hong, et al.
Publicado: (2022) -
Transfer transcriptomic signatures for infectious diseases
por: di Iulio, Julia, et al.
Publicado: (2021) -
On the sparsity of fitness functions and implications for learning
por: Brookes, David H., et al.
Publicado: (2021) -
Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data
por: Sha, Yutong, et al.
Publicado: (2020)