Cargando…
Machine learning analysis of gene expression profile reveals a novel diagnostic signature for osteoporosis
BACKGROUND: Osteoporosis (OP) is increasingly prevalent with the aging of the world population. It is urgent to identify efficient diagnostic signatures for the clinical application. METHOD: We downloaded the mRNA profile of 90 peripheral blood samples with or without OP from GEO database (Number: G...
Autores principales: | Chen, Xinlei, Liu, Guangping, Wang, Shuxiang, Zhang, Haiyang, Xue, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958453/ https://www.ncbi.nlm.nih.gov/pubmed/33722258 http://dx.doi.org/10.1186/s13018-021-02329-1 |
Ejemplares similares
-
Identification and validation of diagnostic signature genes in non-obstructive azoospermia by machine learning
por: Ran, Lingxiang, et al.
Publicado: (2023) -
Plasma Metabolomics and Machine Learning-Driven Novel Diagnostic Signature for Non-Alcoholic Steatohepatitis
por: Ji, Moongi, et al.
Publicado: (2022) -
Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases
por: Martínez, Brittany A., et al.
Publicado: (2022) -
A novel prognostic 6-gene signature for osteoporosis
por: Zhao, Yu, et al.
Publicado: (2022) -
Exploring the shared gene signatures of smoking-related osteoporosis and chronic obstructive pulmonary disease using machine learning algorithms
por: Wang, Haotian, et al.
Publicado: (2023)