Cargando…
stochprofML: stochastic profiling using maximum likelihood estimation in R
BACKGROUND: Tissues are often heterogeneous in their single-cell molecular expression, and this can govern the regulation of cell fate. For the understanding of development and disease, it is important to quantify heterogeneity in a given tissue. RESULTS: We present the R package stochprofML which u...
Autores principales: | Amrhein, Lisa, Fuchs, Christiane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958472/ https://www.ncbi.nlm.nih.gov/pubmed/33722188 http://dx.doi.org/10.1186/s12859-021-03970-7 |
Ejemplares similares
-
DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood
por: Kim, Tane, et al.
Publicado: (2014) -
MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics
por: Helaers, Raphaël, et al.
Publicado: (2010) -
Vestige: Maximum likelihood phylogenetic footprinting
por: Wakefield, Matthew J, et al.
Publicado: (2005) -
PSMIX: an R package for population structure inference via maximum likelihood method
por: Wu, Baolin, et al.
Publicado: (2006) -
Approximate maximum likelihood estimation for stochastic chemical kinetics
por: Andreychenko, Aleksandr, et al.
Publicado: (2012)