Cargando…

Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet

Obesity is a metabolic disease that is accompanied by oxidative stress. Mitochondrial dysfunction is closely associated with the occurrence and development of obesity. However, it is unclear if there are differences in mitochondrial redox homeostasis and energy metabolism between obesity‐prone (OP)...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Yipin, Li, Yingrui, Sun, Yongjuan, Ma, Shuhua, Zhang, Kai, Tang, Xue, Chen, Ailing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958544/
https://www.ncbi.nlm.nih.gov/pubmed/33747472
http://dx.doi.org/10.1002/fsn3.2134
_version_ 1783664838630703104
author Lu, Yipin
Li, Yingrui
Sun, Yongjuan
Ma, Shuhua
Zhang, Kai
Tang, Xue
Chen, Ailing
author_facet Lu, Yipin
Li, Yingrui
Sun, Yongjuan
Ma, Shuhua
Zhang, Kai
Tang, Xue
Chen, Ailing
author_sort Lu, Yipin
collection PubMed
description Obesity is a metabolic disease that is accompanied by oxidative stress. Mitochondrial dysfunction is closely associated with the occurrence and development of obesity. However, it is unclear if there are differences in mitochondrial redox homeostasis and energy metabolism between obesity‐prone (OP) and obesity‐resistant (OR) individuals and if these differences account for the different susceptibilities to developing obesity. The present study aimed to compare the regulation of energy metabolism between OP and OR rats during high‐fat diet (HFD)‐induced oxidative stress. Male Sprague Dawley rats were randomly divided into the control group and the HFD group. The HFD group was further divided into the OP and OR groups based on body weight gain (upper 1/3 for OP; lower 1/3 for OR) after eight weeks on HFD. Rats were sacrificed at the 8th and 20th week, and serum and organs were collected. At 8 weeks, HFD decreased mitochondrial antioxidant enzyme activity and increased the production of ROS in the OP rats, which was accompanied by unusual mitochondrial oxidative phosphorylation, reduced mitochondrial membrane potential (MMP), and decreased ATP production. When the feeding period was extended beyond the 8 weeks, the energy expenditure of the OP rats reduced further, resulting in elevated blood lipids and glucose levels and increased body weight. In contrast, the OR rats had higher mitochondrial antioxidant enzyme activity and normal redox homeostasis throughout the period, which was beneficial in energy utilization and ATP production. Thus, the increase in energy expenditure in the OR rats reduced the HFD‐induced weight gain. Mitochondrial function and antioxidant defense might be involved in the different propensities for developing obesity. Consequently, the ability of OR rats to resist obesity may be attributed to their ability to maintain mitochondrial function and redox balance.
format Online
Article
Text
id pubmed-7958544
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-79585442021-03-19 Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet Lu, Yipin Li, Yingrui Sun, Yongjuan Ma, Shuhua Zhang, Kai Tang, Xue Chen, Ailing Food Sci Nutr Original Research Obesity is a metabolic disease that is accompanied by oxidative stress. Mitochondrial dysfunction is closely associated with the occurrence and development of obesity. However, it is unclear if there are differences in mitochondrial redox homeostasis and energy metabolism between obesity‐prone (OP) and obesity‐resistant (OR) individuals and if these differences account for the different susceptibilities to developing obesity. The present study aimed to compare the regulation of energy metabolism between OP and OR rats during high‐fat diet (HFD)‐induced oxidative stress. Male Sprague Dawley rats were randomly divided into the control group and the HFD group. The HFD group was further divided into the OP and OR groups based on body weight gain (upper 1/3 for OP; lower 1/3 for OR) after eight weeks on HFD. Rats were sacrificed at the 8th and 20th week, and serum and organs were collected. At 8 weeks, HFD decreased mitochondrial antioxidant enzyme activity and increased the production of ROS in the OP rats, which was accompanied by unusual mitochondrial oxidative phosphorylation, reduced mitochondrial membrane potential (MMP), and decreased ATP production. When the feeding period was extended beyond the 8 weeks, the energy expenditure of the OP rats reduced further, resulting in elevated blood lipids and glucose levels and increased body weight. In contrast, the OR rats had higher mitochondrial antioxidant enzyme activity and normal redox homeostasis throughout the period, which was beneficial in energy utilization and ATP production. Thus, the increase in energy expenditure in the OR rats reduced the HFD‐induced weight gain. Mitochondrial function and antioxidant defense might be involved in the different propensities for developing obesity. Consequently, the ability of OR rats to resist obesity may be attributed to their ability to maintain mitochondrial function and redox balance. John Wiley and Sons Inc. 2021-01-23 /pmc/articles/PMC7958544/ /pubmed/33747472 http://dx.doi.org/10.1002/fsn3.2134 Text en © 2021 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Lu, Yipin
Li, Yingrui
Sun, Yongjuan
Ma, Shuhua
Zhang, Kai
Tang, Xue
Chen, Ailing
Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet
title Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet
title_full Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet
title_fullStr Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet
title_full_unstemmed Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet
title_short Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet
title_sort differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958544/
https://www.ncbi.nlm.nih.gov/pubmed/33747472
http://dx.doi.org/10.1002/fsn3.2134
work_keys_str_mv AT luyipin differencesinenergymetabolismandmitochondrialredoxstatusaccountforthedifferencesinpropensityfordevelopingobesityinratsfedonhighfatdiet
AT liyingrui differencesinenergymetabolismandmitochondrialredoxstatusaccountforthedifferencesinpropensityfordevelopingobesityinratsfedonhighfatdiet
AT sunyongjuan differencesinenergymetabolismandmitochondrialredoxstatusaccountforthedifferencesinpropensityfordevelopingobesityinratsfedonhighfatdiet
AT mashuhua differencesinenergymetabolismandmitochondrialredoxstatusaccountforthedifferencesinpropensityfordevelopingobesityinratsfedonhighfatdiet
AT zhangkai differencesinenergymetabolismandmitochondrialredoxstatusaccountforthedifferencesinpropensityfordevelopingobesityinratsfedonhighfatdiet
AT tangxue differencesinenergymetabolismandmitochondrialredoxstatusaccountforthedifferencesinpropensityfordevelopingobesityinratsfedonhighfatdiet
AT chenailing differencesinenergymetabolismandmitochondrialredoxstatusaccountforthedifferencesinpropensityfordevelopingobesityinratsfedonhighfatdiet