Cargando…
Redox Property Tuning in Bipyridinium Salts
Bipyridinium salts are currently very popular due to their perspective applications in redox flow batteries. Hence, we designed and prepared a series of bipyridiniums based on 2,2′-, 3,3′-, and 4,4′-bipyridine and 2,2′-bipyrimidine. The straightforward synthesis utilizes commercially or readily avai...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958642/ https://www.ncbi.nlm.nih.gov/pubmed/33732685 http://dx.doi.org/10.3389/fchem.2020.631477 |
Sumario: | Bipyridinium salts are currently very popular due to their perspective applications in redox flow batteries. Hence, we designed and prepared a series of bipyridiniums based on 2,2′-, 3,3′-, and 4,4′-bipyridine and 2,2′-bipyrimidine. The straightforward synthesis utilizes commercially or readily available starting compounds and their direct N-alkylation, mostly using 1,3-propanesultone. All eleven target derivatives with systematically evolved structure were investigated by cyclic voltammetry, which allowed elucidating thorough structure-property relationships. The electrochemical behavior depends primarily on the parent scaffold, type of N-alkylation, number of quaternized nitrogen atoms, planarity, counter ion as well as the used media. Two derivatives featuring quasi-reversible redox processes were further tested on rotating disc electrode and in a flow battery half-cell. 4,4′-Bipyridinium derivative bearing two sultone residues showed better performance and stability in the flow half-cell with small capacity decays of 0.09/0.15% per reduction-oxidation cycle, based on the number of the utilized redox processes (one/two). |
---|