Cargando…

Biomechanical Analysis in Five Bar Linkage Prototype Machine of Gait Training and Rehabilitation by IMU Sensor and Electromyography

The prototype machine of gait training and rehabilitation (MGTR) with a five-bar linkage structure was designed to improve the common end-effector type. Additionally, the study was conducted to evaluate the joint angle and muscle activity during walking for the evaluation of prototype: (1) Backgroun...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Jeong-Woo, Kim, Hyeong-Sic
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958945/
https://www.ncbi.nlm.nih.gov/pubmed/33801552
http://dx.doi.org/10.3390/s21051726
Descripción
Sumario:The prototype machine of gait training and rehabilitation (MGTR) with a five-bar linkage structure was designed to improve the common end-effector type. Additionally, the study was conducted to evaluate the joint angle and muscle activity during walking for the evaluation of prototype: (1) Background: The gait rehabilitation systems are largely divided into exoskeletal type and end-effector type. The end-effector type can be improved a gait trajectory similar to normal gait according to this prototype. Therefore, a new design of prototype MGTR is proposed in this study. (2) Methods: The gait experience was conducted with thirteen healthy male subjects using an inertial measurement unit (IMU) sensor and electromyography (EMG). It was compared that the hip and knee joints and the muscle activity between the normal gait and MGTR. (3) Results: The results showed that there was a high correlation between the knee joint angle for normal gait and MGTR. The range of motion (RoM) was small for the MGTR. The EMG results showed that the activation of the rectus femoris muscle was most similar to the normal gait and MGTR. (4) Conclusions: The characteristics of the kinematic variables of the subjects varied widely. It is necessary to modify the machine so that the link length can be adjusted in consideration of various segment lengths of patients.