Cargando…

Metabolome-Based Discrimination Analysis of Five Lilium Bulbs Associated with Differences in Secondary Metabolites

The bulbs of several Lilium species are considered to be both functional foods and traditional medicine in northern and eastern Asia. Considering the limited information regarding the specific bioactive compounds contributing to the functional properties of these bulbs, we compared the secondary met...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Ying, Wang, Huan, Lang, Lixin, Dou, Xiaoying, Bai, Jinrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958954/
https://www.ncbi.nlm.nih.gov/pubmed/33801551
http://dx.doi.org/10.3390/molecules26051340
Descripción
Sumario:The bulbs of several Lilium species are considered to be both functional foods and traditional medicine in northern and eastern Asia. Considering the limited information regarding the specific bioactive compounds contributing to the functional properties of these bulbs, we compared the secondary metabolites of ten Lilium bulb samples belonging to five different species, using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based secondary metabolomics approach. In total, 245 secondary metabolites were detected; further, more metabolites were detected from purple Lilium bulbs (217 compounds) than from white bulbs (123–171 compounds). Similar metabolite profiles were detected in samples within the same species irrespective of where they were collected. By combining herbal analysis and screening differential metabolites, steroid saponins were considered the key bioactive compounds in medicinal lilies. Of the 14 saponins detected, none were accumulated in the bulbs of L. davidii var. willmottiae, also called sweet lily. The purple bulbs of L. regale accumulated more secondary metabolites, and, notably, more phenolic acid compounds and flavonoids. Overall, this study elucidates the differential metabolites in lily bulbs with varying functions and colors and provides a reference for further research on functional foods and the medicinal efficacy of Lilium species.