Cargando…
COVID-19 Recognition Using Ensemble-CNNs in Two New Chest X-ray Databases
The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the number of available...
Autores principales: | Vantaggiato, Edoardo, Paladini, Emanuela, Bougourzi, Fares, Distante, Cosimo, Hadid, Abdenour, Taleb-Ahmed, Abdelmalik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959300/ https://www.ncbi.nlm.nih.gov/pubmed/33802428 http://dx.doi.org/10.3390/s21051742 |
Ejemplares similares
-
Two Ensemble-CNN Approaches for Colorectal Cancer Tissue Type Classification
por: Paladini, Emanuela, et al.
Publicado: (2021) -
Per-COVID-19: A Benchmark Dataset for COVID-19 Percentage Estimation from CT-Scans
por: Bougourzi, Fares, et al.
Publicado: (2021) -
Recognition of COVID-19 from CT Scans Using Two-Stage Deep-Learning-Based Approach: CNR-IEMN †
por: Bougourzi, Fares, et al.
Publicado: (2021) -
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022)