Cargando…
CogNet: classification of gene expression data based on ranked active-subnetwork-oriented KEGG pathway enrichment analysis
Most of the traditional gene selection approaches are borrowed from other fields such as statistics and computer science, However, they do not prioritize biologically relevant genes since the ultimate goal is to determine features that optimize model performance metrics not to build a biologically m...
Autores principales: | Yousef, Malik, Ülgen, Ege, Uğur Sezerman, Osman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959595/ https://www.ncbi.nlm.nih.gov/pubmed/33816987 http://dx.doi.org/10.7717/peerj-cs.336 |
Ejemplares similares
-
pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks
por: Ulgen, Ege, et al.
Publicado: (2019) -
miRcorrNet: machine learning-based integration of miRNA and mRNA expression profiles, combined with feature grouping and ranking
por: Yousef, Malik, et al.
Publicado: (2021) -
PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology
por: Ulgen, Ege, et al.
Publicado: (2023) -
Structural analysis of M1AP variants associated with severely impaired spermatogenesis causing male infertility
por: Gerlevik, Umut, et al.
Publicado: (2022) -
driveR: a novel method for prioritizing cancer driver genes using somatic genomics data
por: Ülgen, Ege, et al.
Publicado: (2021)