Cargando…
Comparing general and specialized word embeddings for biomedical named entity recognition
Increased interest in the use of word embeddings, such as word representation, for biomedical named entity recognition (BioNER) has highlighted the need for evaluations that aid in selecting the best word embedding to be used. One common criterion for selecting a word embedding is the type of source...
Autores principales: | Ramos-Vargas, Rigo E., Román-Godínez, Israel, Torres-Ramos, Sulema |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959609/ https://www.ncbi.nlm.nih.gov/pubmed/33817030 http://dx.doi.org/10.7717/peerj-cs.384 |
Ejemplares similares
-
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Genomic signal processing for DNA sequence clustering
por: Mendizabal-Ruiz, Gerardo, et al.
Publicado: (2018) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Biomedical named entity recognition based on fusion multi-features embedding
por: Li, Meijing, et al.
Publicado: (2023) -
Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
por: Munkhdalai, Tsendsuren, et al.
Publicado: (2015)