Cargando…
Petri Net based modeling and analysis for improved resource utilization in cloud computing
The cloud is a shared pool of systems that provides multiple resources through the Internet, users can access a lot of computing power using their computer. However, with the strong migration rate of multiple applications towards the cloud, more disks and servers are required to store huge data. Mos...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959626/ https://www.ncbi.nlm.nih.gov/pubmed/33817001 http://dx.doi.org/10.7717/peerj-cs.351 |
Sumario: | The cloud is a shared pool of systems that provides multiple resources through the Internet, users can access a lot of computing power using their computer. However, with the strong migration rate of multiple applications towards the cloud, more disks and servers are required to store huge data. Most of the cloud storage service providers are replicating full copies of data over multiple data centers to ensure data availability. Further, the replication is not only a costly process but also a wastage of energy resources. Furthermore, erasure codes reduce the storage cost by splitting data in n chunks and storing these chunks into n + k different data centers, to tolerate k failures. Moreover, it also needs extra computation cost to regenerate the data object. Cache-A Replica On Modification (CAROM) is a hybrid file system that gets combined benefits from both the replication and erasure codes to reduce access latency and bandwidth consumption. However, in the literature, no formal analysis of CAROM is available which can validate its performance. To address this issue, this research firstly presents a colored Petri net based formal model of CAROM. The research proceeds by presenting a formal analysis and simulation to validate the performance of the proposed system. This paper contributes towards the utilization of resources in clouds by presenting a comprehensive formal analysis of CAROM. |
---|