Cargando…

DCS-ELM: a novel method for extreme learning machine for regression problems and a new approach for the SFRSCC

Extreme learning machine (ELM) algorithm is widely used in regression and classification problems due to its advantages such as speed and high-performance rate. Different artificial intelligence-based optimization methods and chaotic systems have been proposed for the development of the ELM. However...

Descripción completa

Detalles Bibliográficos
Autores principales: Altay, Osman, Ulas, Mustafa, Alyamac, Kursat Esat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959629/
https://www.ncbi.nlm.nih.gov/pubmed/33817052
http://dx.doi.org/10.7717/peerj-cs.411
Descripción
Sumario:Extreme learning machine (ELM) algorithm is widely used in regression and classification problems due to its advantages such as speed and high-performance rate. Different artificial intelligence-based optimization methods and chaotic systems have been proposed for the development of the ELM. However, a generalized solution method and success rate at the desired level could not be obtained. In this study, a new method is proposed as a result of developing the ELM algorithm used in regression problems with discrete-time chaotic systems. ELM algorithm has been improved by testing five different chaotic maps (Chebyshev, iterative, logistic, piecewise, tent) from chaotic systems. The proposed discrete-time chaotic systems based ELM (DCS-ELM) algorithm has been tested in steel fiber reinforced self-compacting concrete data sets and public four different datasets, and a result of its performance compared with the basic ELM algorithm, linear regression, support vector regression, kernel ELM algorithm and weighted ELM algorithm. It has been observed that it gives a better performance than other algorithms.