Cargando…
Survey on graph embeddings and their applications to machine learning problems on graphs
Dealing with relational data always required significant computational resources, domain expertise and task-dependent feature engineering to incorporate structural information into a predictive model. Nowadays, a family of automated graph feature engineering techniques has been proposed in different...
Autores principales: | Makarov, Ilya, Kiselev, Dmitrii, Nikitinsky, Nikita, Subelj, Lovro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959646/ https://www.ncbi.nlm.nih.gov/pubmed/33817007 http://dx.doi.org/10.7717/peerj-cs.357 |
Ejemplares similares
-
Fusion of text and graph information for machine learning problems on networks
por: Makarov, Ilya, et al.
Publicado: (2021) -
Temporal network embedding framework with causal anonymous walks representations
por: Makarov, Ilya, et al.
Publicado: (2022) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Graph embedding and geometric deep learning relevance to network biology and structural chemistry
por: Lecca, Paola, et al.
Publicado: (2023) -
Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs
por: Gunduz, Hakan
Publicado: (2022)