Cargando…
An efficient approach for low latency processing in stream data
Stream data is the data that is generated continuously from the different data sources and ideally defined as the data that has no discrete beginning or end. Processing the stream data is a part of big data analytics that aims at querying the continuously arriving data and extracting meaningful info...
Autores principales: | Bhatt, Nirav, Thakkar, Amit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959664/ https://www.ncbi.nlm.nih.gov/pubmed/33817060 http://dx.doi.org/10.7717/peerj-cs.426 |
Ejemplares similares
-
Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble
por: Sarnovsky, Martin, et al.
Publicado: (2021) -
Correct and stable sorting for overflow streaming data with a limited storage size and a uniprocessor
por: Chaikhan, Suluk, et al.
Publicado: (2021) -
MF-Storm: a maximum flow-based job scheduler for stream processing engines on computational clusters to increase throughput
por: Muhammad, Asif, et al.
Publicado: (2022) -
Using demographics toward efficient data classification in citizen science: a Bayesian approach
por: De Lellis, Pietro, et al.
Publicado: (2019) -
Efficient processing of complex XSD using Hive and Spark
por: Martinez-Mosquera, Diana, et al.
Publicado: (2021)