Cargando…
Vector representation based on a supervised codebook for Nepali documents classification
Document representation with outlier tokens exacerbates the classification performance due to the uncertain orientation of such tokens. Most existing document representation methods in different languages including Nepali mostly ignore the strategies to filter them out from documents before learning...
Autores principales: | Sitaula, Chiranjibi, Basnet, Anish, Aryal, Sunil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959666/ https://www.ncbi.nlm.nih.gov/pubmed/33817053 http://dx.doi.org/10.7717/peerj-cs.412 |
Ejemplares similares
-
Feature selection by integrating document frequency with genetic algorithm for Amharic news document classification
por: Endalie, Demeke, et al.
Publicado: (2022) -
Confusion2Vec: towards enriching vector space word representations with representational ambiguities
por: Gurunath Shivakumar, Prashanth, et al.
Publicado: (2019) -
A Genetic Folding Strategy Based Support Vector Machine to Optimize Lung Cancer Classification
por: Mezher, Mohammad A., et al.
Publicado: (2022) -
Building One-Shot Semi-Supervised (BOSS) Learning Up to Fully Supervised Performance
por: Smith, Leslie N., et al.
Publicado: (2022) -
Editorial: Information extraction for health documents
por: Mensa, Enrico, et al.
Publicado: (2023)