Cargando…
Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis
Traditional synaptic plasticity experiments and models depend on tight temporal correlations between pre- and postsynaptic activity. These tight temporal correlations, on the order of tens of milliseconds, are incompatible with significantly longer behavioral time scales, and as such might not be ab...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959845/ https://www.ncbi.nlm.nih.gov/pubmed/33732128 http://dx.doi.org/10.3389/fncom.2021.640235 |
_version_ | 1783665039996092416 |
---|---|
author | Cone, Ian Shouval, Harel Z. |
author_facet | Cone, Ian Shouval, Harel Z. |
author_sort | Cone, Ian |
collection | PubMed |
description | Traditional synaptic plasticity experiments and models depend on tight temporal correlations between pre- and postsynaptic activity. These tight temporal correlations, on the order of tens of milliseconds, are incompatible with significantly longer behavioral time scales, and as such might not be able to account for plasticity induced by behavior. Indeed, recent findings in hippocampus suggest that rapid, bidirectional synaptic plasticity which modifies place fields in CA1 operates at behavioral time scales. These experimental results suggest that presynaptic activity generates synaptic eligibility traces both for potentiation and depression, which last on the order of seconds. These traces can be converted to changes in synaptic efficacies by the activation of an instructive signal that depends on naturally occurring or experimentally induced plateau potentials. We have developed a simple mathematical model that is consistent with these observations. This model can be fully analyzed to find the fixed points of induced place fields and how these fixed points depend on system parameters such as the size and shape of presynaptic place fields, the animal's velocity during induction, and the parameters of the plasticity rule. We also make predictions about the convergence time to these fixed points, both for induced and pre-existing place fields. |
format | Online Article Text |
id | pubmed-7959845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79598452021-03-16 Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis Cone, Ian Shouval, Harel Z. Front Comput Neurosci Neuroscience Traditional synaptic plasticity experiments and models depend on tight temporal correlations between pre- and postsynaptic activity. These tight temporal correlations, on the order of tens of milliseconds, are incompatible with significantly longer behavioral time scales, and as such might not be able to account for plasticity induced by behavior. Indeed, recent findings in hippocampus suggest that rapid, bidirectional synaptic plasticity which modifies place fields in CA1 operates at behavioral time scales. These experimental results suggest that presynaptic activity generates synaptic eligibility traces both for potentiation and depression, which last on the order of seconds. These traces can be converted to changes in synaptic efficacies by the activation of an instructive signal that depends on naturally occurring or experimentally induced plateau potentials. We have developed a simple mathematical model that is consistent with these observations. This model can be fully analyzed to find the fixed points of induced place fields and how these fixed points depend on system parameters such as the size and shape of presynaptic place fields, the animal's velocity during induction, and the parameters of the plasticity rule. We also make predictions about the convergence time to these fixed points, both for induced and pre-existing place fields. Frontiers Media S.A. 2021-03-01 /pmc/articles/PMC7959845/ /pubmed/33732128 http://dx.doi.org/10.3389/fncom.2021.640235 Text en Copyright © 2021 Cone and Shouval. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Cone, Ian Shouval, Harel Z. Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis |
title | Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis |
title_full | Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis |
title_fullStr | Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis |
title_full_unstemmed | Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis |
title_short | Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis |
title_sort | behavioral time scale plasticity of place fields: mathematical analysis |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959845/ https://www.ncbi.nlm.nih.gov/pubmed/33732128 http://dx.doi.org/10.3389/fncom.2021.640235 |
work_keys_str_mv | AT coneian behavioraltimescaleplasticityofplacefieldsmathematicalanalysis AT shouvalharelz behavioraltimescaleplasticityofplacefieldsmathematicalanalysis |