Cargando…

A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression

Slice-to-volume reconstruction (SVR) method can deal well with motion artifacts and provide high-quality 3D image data for fetal brain MRI. However, the problem of sparse sampling is not well addressed in the SVR method. In this paper, we mainly focus on the sparse volume reconstruction of fetal bra...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Qian, Zhang, Yi, Wen, Tiexiang, Li, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960018/
https://www.ncbi.nlm.nih.gov/pubmed/33748279
http://dx.doi.org/10.1155/2021/6685943
_version_ 1783665049583222784
author Ni, Qian
Zhang, Yi
Wen, Tiexiang
Li, Ling
author_facet Ni, Qian
Zhang, Yi
Wen, Tiexiang
Li, Ling
author_sort Ni, Qian
collection PubMed
description Slice-to-volume reconstruction (SVR) method can deal well with motion artifacts and provide high-quality 3D image data for fetal brain MRI. However, the problem of sparse sampling is not well addressed in the SVR method. In this paper, we mainly focus on the sparse volume reconstruction of fetal brain MRI from multiple stacks corrupted with motion artifacts. Based on the SVR framework, our approach includes the slice-to-volume 2D/3D registration, the point spread function- (PSF-) based volume update, and the adaptive kernel regression-based volume update. The adaptive kernel regression can deal well with the sparse sampling data and enhance the detailed preservation by capturing the local structure through covariance matrix. Experimental results performed on clinical data show that kernel regression results in statistical improvement of image quality for sparse sampling data with the parameter setting of the structure sensitivity 0.4, the steering kernel size of 7 × 7 × 7 and steering smoothing bandwidth of 0.5. The computational performance of the proposed GPU-based method can be over 90 times faster than that on CPU.
format Online
Article
Text
id pubmed-7960018
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-79600182021-03-19 A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression Ni, Qian Zhang, Yi Wen, Tiexiang Li, Ling Biomed Res Int Research Article Slice-to-volume reconstruction (SVR) method can deal well with motion artifacts and provide high-quality 3D image data for fetal brain MRI. However, the problem of sparse sampling is not well addressed in the SVR method. In this paper, we mainly focus on the sparse volume reconstruction of fetal brain MRI from multiple stacks corrupted with motion artifacts. Based on the SVR framework, our approach includes the slice-to-volume 2D/3D registration, the point spread function- (PSF-) based volume update, and the adaptive kernel regression-based volume update. The adaptive kernel regression can deal well with the sparse sampling data and enhance the detailed preservation by capturing the local structure through covariance matrix. Experimental results performed on clinical data show that kernel regression results in statistical improvement of image quality for sparse sampling data with the parameter setting of the structure sensitivity 0.4, the steering kernel size of 7 × 7 × 7 and steering smoothing bandwidth of 0.5. The computational performance of the proposed GPU-based method can be over 90 times faster than that on CPU. Hindawi 2021-03-05 /pmc/articles/PMC7960018/ /pubmed/33748279 http://dx.doi.org/10.1155/2021/6685943 Text en Copyright © 2021 Qian Ni et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ni, Qian
Zhang, Yi
Wen, Tiexiang
Li, Ling
A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression
title A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression
title_full A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression
title_fullStr A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression
title_full_unstemmed A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression
title_short A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression
title_sort sparse volume reconstruction method for fetal brain mri using adaptive kernel regression
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960018/
https://www.ncbi.nlm.nih.gov/pubmed/33748279
http://dx.doi.org/10.1155/2021/6685943
work_keys_str_mv AT niqian asparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression
AT zhangyi asparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression
AT wentiexiang asparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression
AT liling asparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression
AT niqian sparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression
AT zhangyi sparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression
AT wentiexiang sparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression
AT liling sparsevolumereconstructionmethodforfetalbrainmriusingadaptivekernelregression