Cargando…

Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet

X-ray free-electron lasers (XFELs) enable obtaining novel insights in structural biology. The recently available MHz repetition rate XFELs allow full data sets to be collected in shorter time and can also decrease sample consumption. However, the microsecond spacing of MHz XFEL pulses raises new cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Grünbein, Marie Luise, Gorel, Alexander, Foucar, Lutz, Carbajo, Sergio, Colocho, William, Gilevich, Sasha, Hartmann, Elisabeth, Hilpert, Mario, Hunter, Mark, Kloos, Marco, Koglin, Jason E., Lane, Thomas J., Lewandowski, Jim, Lutman, Alberto, Nass, Karol, Nass Kovacs, Gabriela, Roome, Christopher M., Sheppard, John, Shoeman, Robert L., Stricker, Miriam, van Driel, Tim, Vetter, Sharon, Doak, R. Bruce, Boutet, Sébastien, Aquila, Andrew, Decker, Franz Josef, Barends, Thomas R. M., Stan, Claudiu Andrei, Schlichting, Ilme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960726/
https://www.ncbi.nlm.nih.gov/pubmed/33723266
http://dx.doi.org/10.1038/s41467-021-21819-8
_version_ 1783665114188087296
author Grünbein, Marie Luise
Gorel, Alexander
Foucar, Lutz
Carbajo, Sergio
Colocho, William
Gilevich, Sasha
Hartmann, Elisabeth
Hilpert, Mario
Hunter, Mark
Kloos, Marco
Koglin, Jason E.
Lane, Thomas J.
Lewandowski, Jim
Lutman, Alberto
Nass, Karol
Nass Kovacs, Gabriela
Roome, Christopher M.
Sheppard, John
Shoeman, Robert L.
Stricker, Miriam
van Driel, Tim
Vetter, Sharon
Doak, R. Bruce
Boutet, Sébastien
Aquila, Andrew
Decker, Franz Josef
Barends, Thomas R. M.
Stan, Claudiu Andrei
Schlichting, Ilme
author_facet Grünbein, Marie Luise
Gorel, Alexander
Foucar, Lutz
Carbajo, Sergio
Colocho, William
Gilevich, Sasha
Hartmann, Elisabeth
Hilpert, Mario
Hunter, Mark
Kloos, Marco
Koglin, Jason E.
Lane, Thomas J.
Lewandowski, Jim
Lutman, Alberto
Nass, Karol
Nass Kovacs, Gabriela
Roome, Christopher M.
Sheppard, John
Shoeman, Robert L.
Stricker, Miriam
van Driel, Tim
Vetter, Sharon
Doak, R. Bruce
Boutet, Sébastien
Aquila, Andrew
Decker, Franz Josef
Barends, Thomas R. M.
Stan, Claudiu Andrei
Schlichting, Ilme
author_sort Grünbein, Marie Luise
collection PubMed
description X-ray free-electron lasers (XFELs) enable obtaining novel insights in structural biology. The recently available MHz repetition rate XFELs allow full data sets to be collected in shorter time and can also decrease sample consumption. However, the microsecond spacing of MHz XFEL pulses raises new challenges, including possible sample damage induced by shock waves that are launched by preceding pulses in the sample-carrying jet. We explored this matter with an X-ray-pump/X-ray-probe experiment employing haemoglobin microcrystals transported via a liquid jet into the XFEL beam. Diffraction data were collected using a shock-wave-free single-pulse scheme as well as the dual-pulse pump-probe scheme. The latter, relative to the former, reveals significant degradation of crystal hit rate, diffraction resolution and data quality. Crystal structures extracted from the two data sets also differ. Since our pump-probe attributes were chosen to emulate EuXFEL operation at its 4.5 MHz maximum pulse rate, this prompts concern about such data collection.
format Online
Article
Text
id pubmed-7960726
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79607262021-03-28 Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet Grünbein, Marie Luise Gorel, Alexander Foucar, Lutz Carbajo, Sergio Colocho, William Gilevich, Sasha Hartmann, Elisabeth Hilpert, Mario Hunter, Mark Kloos, Marco Koglin, Jason E. Lane, Thomas J. Lewandowski, Jim Lutman, Alberto Nass, Karol Nass Kovacs, Gabriela Roome, Christopher M. Sheppard, John Shoeman, Robert L. Stricker, Miriam van Driel, Tim Vetter, Sharon Doak, R. Bruce Boutet, Sébastien Aquila, Andrew Decker, Franz Josef Barends, Thomas R. M. Stan, Claudiu Andrei Schlichting, Ilme Nat Commun Article X-ray free-electron lasers (XFELs) enable obtaining novel insights in structural biology. The recently available MHz repetition rate XFELs allow full data sets to be collected in shorter time and can also decrease sample consumption. However, the microsecond spacing of MHz XFEL pulses raises new challenges, including possible sample damage induced by shock waves that are launched by preceding pulses in the sample-carrying jet. We explored this matter with an X-ray-pump/X-ray-probe experiment employing haemoglobin microcrystals transported via a liquid jet into the XFEL beam. Diffraction data were collected using a shock-wave-free single-pulse scheme as well as the dual-pulse pump-probe scheme. The latter, relative to the former, reveals significant degradation of crystal hit rate, diffraction resolution and data quality. Crystal structures extracted from the two data sets also differ. Since our pump-probe attributes were chosen to emulate EuXFEL operation at its 4.5 MHz maximum pulse rate, this prompts concern about such data collection. Nature Publishing Group UK 2021-03-15 /pmc/articles/PMC7960726/ /pubmed/33723266 http://dx.doi.org/10.1038/s41467-021-21819-8 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Grünbein, Marie Luise
Gorel, Alexander
Foucar, Lutz
Carbajo, Sergio
Colocho, William
Gilevich, Sasha
Hartmann, Elisabeth
Hilpert, Mario
Hunter, Mark
Kloos, Marco
Koglin, Jason E.
Lane, Thomas J.
Lewandowski, Jim
Lutman, Alberto
Nass, Karol
Nass Kovacs, Gabriela
Roome, Christopher M.
Sheppard, John
Shoeman, Robert L.
Stricker, Miriam
van Driel, Tim
Vetter, Sharon
Doak, R. Bruce
Boutet, Sébastien
Aquila, Andrew
Decker, Franz Josef
Barends, Thomas R. M.
Stan, Claudiu Andrei
Schlichting, Ilme
Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
title Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
title_full Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
title_fullStr Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
title_full_unstemmed Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
title_short Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
title_sort effect of x-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960726/
https://www.ncbi.nlm.nih.gov/pubmed/33723266
http://dx.doi.org/10.1038/s41467-021-21819-8
work_keys_str_mv AT grunbeinmarieluise effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT gorelalexander effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT foucarlutz effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT carbajosergio effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT colochowilliam effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT gilevichsasha effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT hartmannelisabeth effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT hilpertmario effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT huntermark effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT kloosmarco effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT koglinjasone effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT lanethomasj effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT lewandowskijim effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT lutmanalberto effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT nasskarol effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT nasskovacsgabriela effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT roomechristopherm effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT sheppardjohn effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT shoemanrobertl effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT strickermiriam effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT vandrieltim effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT vettersharon effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT doakrbruce effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT boutetsebastien effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT aquilaandrew effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT deckerfranzjosef effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT barendsthomasrm effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT stanclaudiuandrei effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet
AT schlichtingilme effectofxrayfreeelectronlaserinducedshockwavesonhaemoglobinmicrocrystalsdeliveredinaliquidjet