Cargando…

The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types

BACKGROUND: The development of a reactive tumour stroma is a hallmark of tumour progression and pronounced tumour stroma is generally considered to be associated with clinical aggressiveness. The variability between tumour types regarding stroma fraction, and its prognosis associations, have not bee...

Descripción completa

Detalles Bibliográficos
Autores principales: Micke, Patrick, Strell, Carina, Mattsson, Johanna, Martín-Bernabé, Alfonso, Brunnström, Hans, Huvila, Jutta, Sund, Malin, Wärnberg, Fredrik, Ponten, Fredrik, Glimelius, Bengt, Hrynchyk, Ina, Mauchanski, Siarhei, Khelashvili, Salome, Garcia-Vicién, Gemma, Molleví, David G., Edqvist, Per-Henrik, O´Reilly, Aine, Corvigno, Sara, Dahlstrand, Hanna, Botling, Johan, Segersten, Ulrika, Krzyzanowska, Agnieszka, Bjartell, Anders, Elebro, Jacob, Heby, Margareta, Lundgren, Sebastian, Hedner, Charlotta, Borg, David, Brändstedt, Jenny, Sartor, Hanna, Malmström, Per-Uno, Johansson, Martin, Nodin, Björn, Backman, Max, Lindskog, Cecilia, Jirström, Karin, Mezheyeuski, Artur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960932/
https://www.ncbi.nlm.nih.gov/pubmed/33706249
http://dx.doi.org/10.1016/j.ebiom.2021.103269
_version_ 1783665146165460992
author Micke, Patrick
Strell, Carina
Mattsson, Johanna
Martín-Bernabé, Alfonso
Brunnström, Hans
Huvila, Jutta
Sund, Malin
Wärnberg, Fredrik
Ponten, Fredrik
Glimelius, Bengt
Hrynchyk, Ina
Mauchanski, Siarhei
Khelashvili, Salome
Garcia-Vicién, Gemma
Molleví, David G.
Edqvist, Per-Henrik
O´Reilly, Aine
Corvigno, Sara
Dahlstrand, Hanna
Botling, Johan
Segersten, Ulrika
Krzyzanowska, Agnieszka
Bjartell, Anders
Elebro, Jacob
Heby, Margareta
Lundgren, Sebastian
Hedner, Charlotta
Borg, David
Brändstedt, Jenny
Sartor, Hanna
Malmström, Per-Uno
Johansson, Martin
Nodin, Björn
Backman, Max
Lindskog, Cecilia
Jirström, Karin
Mezheyeuski, Artur
author_facet Micke, Patrick
Strell, Carina
Mattsson, Johanna
Martín-Bernabé, Alfonso
Brunnström, Hans
Huvila, Jutta
Sund, Malin
Wärnberg, Fredrik
Ponten, Fredrik
Glimelius, Bengt
Hrynchyk, Ina
Mauchanski, Siarhei
Khelashvili, Salome
Garcia-Vicién, Gemma
Molleví, David G.
Edqvist, Per-Henrik
O´Reilly, Aine
Corvigno, Sara
Dahlstrand, Hanna
Botling, Johan
Segersten, Ulrika
Krzyzanowska, Agnieszka
Bjartell, Anders
Elebro, Jacob
Heby, Margareta
Lundgren, Sebastian
Hedner, Charlotta
Borg, David
Brändstedt, Jenny
Sartor, Hanna
Malmström, Per-Uno
Johansson, Martin
Nodin, Björn
Backman, Max
Lindskog, Cecilia
Jirström, Karin
Mezheyeuski, Artur
author_sort Micke, Patrick
collection PubMed
description BACKGROUND: The development of a reactive tumour stroma is a hallmark of tumour progression and pronounced tumour stroma is generally considered to be associated with clinical aggressiveness. The variability between tumour types regarding stroma fraction, and its prognosis associations, have not been systematically analysed. METHODS: Using an objective machine-learning method we quantified the tumour stroma in 16 solid cancer types from 2732 patients, representing retrospective tissue collections of surgically resected primary tumours. Image analysis performed tissue segmentation into stromal and epithelial compartment based on pan-cytokeratin staining and autofluorescence patterns. FINDINGS: The stroma fraction was highly variable within and across the tumour types, with kidney cancer showing the lowest and pancreato-biliary type periampullary cancer showing the highest stroma proportion (median 19% and 73% respectively). Adjusted Cox regression models revealed both positive (pancreato-biliary type periampullary cancer and oestrogen negative breast cancer, HR(95%CI)=0.56(0.34-0.92) and HR(95%CI)=0.41(0.17-0.98) respectively) and negative (intestinal type periampullary cancer, HR(95%CI)=3.59(1.49-8.62)) associations of the tumour stroma fraction with survival. INTERPRETATION: Our study provides an objective quantification of the tumour stroma fraction across major types of solid cancer. Findings strongly argue against the commonly promoted view of a general associations between high stroma abundance and poor prognosis. The results also suggest that full exploitation of the prognostic potential of tumour stroma requires analyses that go beyond determination of stroma abundance. FUNDING: The Swedish Cancer Society, The Lions Cancer Foundation Uppsala, The Swedish Government Grant for Clinical Research, The Mrs Berta Kamprad Foundation, Sweden, Sellanders foundation, P.O.Zetterling Foundation, and The Sjöberg Foundation, Sweden.
format Online
Article
Text
id pubmed-7960932
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-79609322021-03-19 The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types Micke, Patrick Strell, Carina Mattsson, Johanna Martín-Bernabé, Alfonso Brunnström, Hans Huvila, Jutta Sund, Malin Wärnberg, Fredrik Ponten, Fredrik Glimelius, Bengt Hrynchyk, Ina Mauchanski, Siarhei Khelashvili, Salome Garcia-Vicién, Gemma Molleví, David G. Edqvist, Per-Henrik O´Reilly, Aine Corvigno, Sara Dahlstrand, Hanna Botling, Johan Segersten, Ulrika Krzyzanowska, Agnieszka Bjartell, Anders Elebro, Jacob Heby, Margareta Lundgren, Sebastian Hedner, Charlotta Borg, David Brändstedt, Jenny Sartor, Hanna Malmström, Per-Uno Johansson, Martin Nodin, Björn Backman, Max Lindskog, Cecilia Jirström, Karin Mezheyeuski, Artur EBioMedicine Research Paper BACKGROUND: The development of a reactive tumour stroma is a hallmark of tumour progression and pronounced tumour stroma is generally considered to be associated with clinical aggressiveness. The variability between tumour types regarding stroma fraction, and its prognosis associations, have not been systematically analysed. METHODS: Using an objective machine-learning method we quantified the tumour stroma in 16 solid cancer types from 2732 patients, representing retrospective tissue collections of surgically resected primary tumours. Image analysis performed tissue segmentation into stromal and epithelial compartment based on pan-cytokeratin staining and autofluorescence patterns. FINDINGS: The stroma fraction was highly variable within and across the tumour types, with kidney cancer showing the lowest and pancreato-biliary type periampullary cancer showing the highest stroma proportion (median 19% and 73% respectively). Adjusted Cox regression models revealed both positive (pancreato-biliary type periampullary cancer and oestrogen negative breast cancer, HR(95%CI)=0.56(0.34-0.92) and HR(95%CI)=0.41(0.17-0.98) respectively) and negative (intestinal type periampullary cancer, HR(95%CI)=3.59(1.49-8.62)) associations of the tumour stroma fraction with survival. INTERPRETATION: Our study provides an objective quantification of the tumour stroma fraction across major types of solid cancer. Findings strongly argue against the commonly promoted view of a general associations between high stroma abundance and poor prognosis. The results also suggest that full exploitation of the prognostic potential of tumour stroma requires analyses that go beyond determination of stroma abundance. FUNDING: The Swedish Cancer Society, The Lions Cancer Foundation Uppsala, The Swedish Government Grant for Clinical Research, The Mrs Berta Kamprad Foundation, Sweden, Sellanders foundation, P.O.Zetterling Foundation, and The Sjöberg Foundation, Sweden. Elsevier 2021-03-09 /pmc/articles/PMC7960932/ /pubmed/33706249 http://dx.doi.org/10.1016/j.ebiom.2021.103269 Text en © 2021 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Paper
Micke, Patrick
Strell, Carina
Mattsson, Johanna
Martín-Bernabé, Alfonso
Brunnström, Hans
Huvila, Jutta
Sund, Malin
Wärnberg, Fredrik
Ponten, Fredrik
Glimelius, Bengt
Hrynchyk, Ina
Mauchanski, Siarhei
Khelashvili, Salome
Garcia-Vicién, Gemma
Molleví, David G.
Edqvist, Per-Henrik
O´Reilly, Aine
Corvigno, Sara
Dahlstrand, Hanna
Botling, Johan
Segersten, Ulrika
Krzyzanowska, Agnieszka
Bjartell, Anders
Elebro, Jacob
Heby, Margareta
Lundgren, Sebastian
Hedner, Charlotta
Borg, David
Brändstedt, Jenny
Sartor, Hanna
Malmström, Per-Uno
Johansson, Martin
Nodin, Björn
Backman, Max
Lindskog, Cecilia
Jirström, Karin
Mezheyeuski, Artur
The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types
title The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types
title_full The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types
title_fullStr The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types
title_full_unstemmed The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types
title_short The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types
title_sort prognostic impact of the tumour stroma fraction: a machine learning-based analysis in 16 human solid tumour types
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960932/
https://www.ncbi.nlm.nih.gov/pubmed/33706249
http://dx.doi.org/10.1016/j.ebiom.2021.103269
work_keys_str_mv AT mickepatrick theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT strellcarina theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mattssonjohanna theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT martinbernabealfonso theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT brunnstromhans theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT huvilajutta theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT sundmalin theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT warnbergfredrik theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT pontenfredrik theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT glimeliusbengt theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT hrynchykina theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mauchanskisiarhei theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT khelashvilisalome theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT garciaviciengemma theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mollevidavidg theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT edqvistperhenrik theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT oreillyaine theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT corvignosara theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT dahlstrandhanna theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT botlingjohan theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT segerstenulrika theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT krzyzanowskaagnieszka theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT bjartellanders theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT elebrojacob theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT hebymargareta theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT lundgrensebastian theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT hednercharlotta theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT borgdavid theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT brandstedtjenny theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT sartorhanna theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT malmstromperuno theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT johanssonmartin theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT nodinbjorn theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT backmanmax theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT lindskogcecilia theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT jirstromkarin theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mezheyeuskiartur theprognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mickepatrick prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT strellcarina prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mattssonjohanna prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT martinbernabealfonso prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT brunnstromhans prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT huvilajutta prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT sundmalin prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT warnbergfredrik prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT pontenfredrik prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT glimeliusbengt prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT hrynchykina prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mauchanskisiarhei prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT khelashvilisalome prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT garciaviciengemma prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mollevidavidg prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT edqvistperhenrik prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT oreillyaine prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT corvignosara prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT dahlstrandhanna prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT botlingjohan prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT segerstenulrika prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT krzyzanowskaagnieszka prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT bjartellanders prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT elebrojacob prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT hebymargareta prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT lundgrensebastian prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT hednercharlotta prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT borgdavid prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT brandstedtjenny prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT sartorhanna prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT malmstromperuno prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT johanssonmartin prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT nodinbjorn prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT backmanmax prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT lindskogcecilia prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT jirstromkarin prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes
AT mezheyeuskiartur prognosticimpactofthetumourstromafractionamachinelearningbasedanalysisin16humansolidtumourtypes