Cargando…
Toward machine learning-enhanced high-throughput experimentation for chemistry
High-throughput experimentation in chemistry allows for quick and automated exploration of chemical space to, for example, discover new drugs. Combining machine learning techniques with high-throughput experimentation has the potential to speed up and improve chemical space exploration and optimizat...
Autor principal: | Callaghan, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961180/ https://www.ncbi.nlm.nih.gov/pubmed/33748798 http://dx.doi.org/10.1016/j.patter.2021.100221 |
Ejemplares similares
-
Preview of machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
por: Callaghan, Sarah
Publicado: (2021) -
Preview of: A Primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives
por: Callaghan, Sarah
Publicado: (2020) -
Practical machine learning for disease diagnosis
por: Summers, Huw D.
Publicado: (2021) -
Shattering cancer with quantum machine learning: A preview
por: Geraci, Joseph
Publicado: (2021) -
Data Sharing in a Time of Pandemic
por: Callaghan, Sarah
Publicado: (2020)