Cargando…
Noise regularization removes correlation artifacts in single-cell RNA-seq data preprocessing
With the rapid advancement of single-cell RNA-sequencing (scRNA-seq) technology, many data-preprocessing methods have been proposed to address numerous systematic errors and technical variabilities inherent in this technology. While these methods have been demonstrated to be effective in recovering...
Autores principales: | Zhang, Ruoyu, Atwal, Gurinder S., Lim, Wei Keat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961184/ https://www.ncbi.nlm.nih.gov/pubmed/33748795 http://dx.doi.org/10.1016/j.patter.2021.100211 |
Ejemplares similares
-
Optimization of miRNA-seq data preprocessing
por: Tam, Shirley, et al.
Publicado: (2015) -
Stability of scRNA-Seq Analysis Workflows is Susceptible to Preprocessing and is Mitigated by Regularized or Supervised Approaches
por: Durmaz, Arda, et al.
Publicado: (2022) -
FastqPuri: high-performance preprocessing of RNA-seq data
por: Pérez-Rubio, Paula, et al.
Publicado: (2019) -
Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
por: Wang, Chunxiang, et al.
Publicado: (2020) -
NDRindex: a method for the quality assessment of single-cell RNA-Seq preprocessing data
por: Xiao, Ruiyu, et al.
Publicado: (2020)