Cargando…
Latent representation learning in biology and translational medicine
Current data generation capabilities in the life sciences render scientists in an apparently contradicting situation. While it is possible to simultaneously measure an ever-increasing number of systems parameters, the resulting data are becoming increasingly difficult to interpret. Latent variable m...
Autores principales: | Kopf, Andreas, Claassen, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961186/ https://www.ncbi.nlm.nih.gov/pubmed/33748792 http://dx.doi.org/10.1016/j.patter.2021.100198 |
Ejemplares similares
-
Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data
por: Kopf, Andreas, et al.
Publicado: (2021) -
Sensitive detection of rare disease-associated cell subsets via representation learning
por: Arvaniti, Eirini, et al.
Publicado: (2017) -
Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm
por: Karagiannaki, Ioulia, et al.
Publicado: (2022) -
Biological representation of chemicals using latent target interaction profile
por: Ayed, Mohamed, et al.
Publicado: (2019) -
Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations
por: Way, Gregory P., et al.
Publicado: (2020)