Cargando…

Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery

Purpose: The present research work was designed to formulate and evaluate carbamazepine (CBZ) loaded nanostructured lipid carrier (NLC) based in-situ gel for nasal delivery. Methods: The NLC formulation of CBZ was prepared by microemulsion technique followed by probe sonication and evaluated for par...

Descripción completa

Detalles Bibliográficos
Autores principales: Deshkar, Sanjeevani Shekhar, Jadhav, Monali Shivaji, Shirolkar, Satish Vasudeo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tabriz University of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961220/
https://www.ncbi.nlm.nih.gov/pubmed/33747862
http://dx.doi.org/10.34172/apb.2021.016
_version_ 1783665212020228096
author Deshkar, Sanjeevani Shekhar
Jadhav, Monali Shivaji
Shirolkar, Satish Vasudeo
author_facet Deshkar, Sanjeevani Shekhar
Jadhav, Monali Shivaji
Shirolkar, Satish Vasudeo
author_sort Deshkar, Sanjeevani Shekhar
collection PubMed
description Purpose: The present research work was designed to formulate and evaluate carbamazepine (CBZ) loaded nanostructured lipid carrier (NLC) based in-situ gel for nasal delivery. Methods: The NLC formulation of CBZ was prepared by microemulsion technique followed by probe sonication and evaluated for particle size, zeta potential, entrapment efficiency and in vitro drug diffusion. NLC formulation was incorporated into in-situ gelling formulation using poloxamer 407 (P407), poloxamer 188 (P188) and mucoadhesive polymer. The effect of concentration of poloxamer 188 (X(1) ), type of mucoadhesive polymer (X(2) ) and concentration of mucoadhesive polymer (X(3) ) on gelling temperature (Y(1) ) and drug diffusion after 8 h (Y(2) ) was studied using Box-Behnken design. In vivo anticonvulsant activity of optimized formulation was studied in Wistar rats by maximal electro-convulsion model (MES). Results: The optimized CBZ NLC formulation, with 20% drug loading, 0.5:1 as Precirol:Capmul MCM ratio as lipid phase and 1:3 as Lipid:Smix ratio, resulted in 89.73±0.2% drug entrapment, 55.95±1.09% of drug diffusion after 8 h, particle size of 132.8 nm with polydispersity index of 0.302 and zeta potential of -29.2±6.1 mV. The in-situ gel formulation with 20% P407, 5% P188 and 0.2% chitosan was optimized and demonstrated excellent gelling ability, gelling temperature in the range of 30 to 35°C, 42.46% of drug diffusion in 8 h by Fickian diffusion mechanism and 31.34±0.76% of drug permeation through sheep nasal mucosa. In vitro anticonvulsant activity in MES model in rat demonstrated significant efficacy (71.95% protection against seizure in extension phase) as compared to plain in-situ nasal gel (50.26% protection against seizure in extension phase). Conclusion: NLC based in-situ gelling formulation demonstrated its potential for nasal delivery of CBZ with improved anticonvulsant activity.
format Online
Article
Text
id pubmed-7961220
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Tabriz University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-79612202021-03-19 Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery Deshkar, Sanjeevani Shekhar Jadhav, Monali Shivaji Shirolkar, Satish Vasudeo Adv Pharm Bull Research Article Purpose: The present research work was designed to formulate and evaluate carbamazepine (CBZ) loaded nanostructured lipid carrier (NLC) based in-situ gel for nasal delivery. Methods: The NLC formulation of CBZ was prepared by microemulsion technique followed by probe sonication and evaluated for particle size, zeta potential, entrapment efficiency and in vitro drug diffusion. NLC formulation was incorporated into in-situ gelling formulation using poloxamer 407 (P407), poloxamer 188 (P188) and mucoadhesive polymer. The effect of concentration of poloxamer 188 (X(1) ), type of mucoadhesive polymer (X(2) ) and concentration of mucoadhesive polymer (X(3) ) on gelling temperature (Y(1) ) and drug diffusion after 8 h (Y(2) ) was studied using Box-Behnken design. In vivo anticonvulsant activity of optimized formulation was studied in Wistar rats by maximal electro-convulsion model (MES). Results: The optimized CBZ NLC formulation, with 20% drug loading, 0.5:1 as Precirol:Capmul MCM ratio as lipid phase and 1:3 as Lipid:Smix ratio, resulted in 89.73±0.2% drug entrapment, 55.95±1.09% of drug diffusion after 8 h, particle size of 132.8 nm with polydispersity index of 0.302 and zeta potential of -29.2±6.1 mV. The in-situ gel formulation with 20% P407, 5% P188 and 0.2% chitosan was optimized and demonstrated excellent gelling ability, gelling temperature in the range of 30 to 35°C, 42.46% of drug diffusion in 8 h by Fickian diffusion mechanism and 31.34±0.76% of drug permeation through sheep nasal mucosa. In vitro anticonvulsant activity in MES model in rat demonstrated significant efficacy (71.95% protection against seizure in extension phase) as compared to plain in-situ nasal gel (50.26% protection against seizure in extension phase). Conclusion: NLC based in-situ gelling formulation demonstrated its potential for nasal delivery of CBZ with improved anticonvulsant activity. Tabriz University of Medical Sciences 2021-01 2020-11-07 /pmc/articles/PMC7961220/ /pubmed/33747862 http://dx.doi.org/10.34172/apb.2021.016 Text en © 2021 The Authors. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
spellingShingle Research Article
Deshkar, Sanjeevani Shekhar
Jadhav, Monali Shivaji
Shirolkar, Satish Vasudeo
Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery
title Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery
title_full Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery
title_fullStr Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery
title_full_unstemmed Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery
title_short Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery
title_sort development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961220/
https://www.ncbi.nlm.nih.gov/pubmed/33747862
http://dx.doi.org/10.34172/apb.2021.016
work_keys_str_mv AT deshkarsanjeevanishekhar developmentofcarbamazepinenanostructuredlipidcarrierloadedthermosensitivegelforintranasaldelivery
AT jadhavmonalishivaji developmentofcarbamazepinenanostructuredlipidcarrierloadedthermosensitivegelforintranasaldelivery
AT shirolkarsatishvasudeo developmentofcarbamazepinenanostructuredlipidcarrierloadedthermosensitivegelforintranasaldelivery