Cargando…
Lactation milk yield prediction in primiparous cows on a farm using the seasonal auto-regressive integrated moving average model, nonlinear autoregressive exogenous artificial neural networks and Wood’s model
OBJECTIVE: The aim of the present study was to compare the effectiveness of three approaches (the seasonal auto-regressive integrated moving average [SARIMA] model, the nonlinear autoregressive exogenous [NARX] artificial neural networks and Wood’s model) to the prediction of milk yield during lacta...
Autores principales: | Grzesiak, Wilhelm, Zaborski, Daniel, Szatkowska, Iwona, Królaczyk, Katarzyna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Animal Bioscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961269/ https://www.ncbi.nlm.nih.gov/pubmed/32299176 http://dx.doi.org/10.5713/ajas.19.0939 |
Ejemplares similares
-
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
por: Lynch, Christopher J., et al.
Publicado: (2021) -
An Autoregressive Integrated Moving Average Model for Predicting Varicella Outbreaks — China, 2019
por: Wang, Miaomiao, et al.
Publicado: (2023) -
Application of an autoregressive integrated moving average model for predicting injury mortality in Xiamen, China
por: Lin, Yilan, et al.
Publicado: (2015) -
Forecasting Indian infant mortality rate: An application of autoregressive integrated moving average model
por: Mishra, Amit K., et al.
Publicado: (2019) -
Seasonal autoregressive integrated moving average (SARIMA) time-series model for milk production forecasting in pasture-based dairy cows in the Andean highlands
por: Perez-Guerra, Uri H., et al.
Publicado: (2023)