Cargando…

Development of a multivariable prediction model for early revision of total knee arthroplasty – The effect of including patient-reported outcome measures

BACKGROUND: Revision TKA is a serious adverse event with substantial consequences for the patient. As revision is becoming increasingly common in patients under 65 years, the need for improved preoperative patient selection is imminently needed. Therefore, this study aimed to identify the most impor...

Descripción completa

Detalles Bibliográficos
Autores principales: Andersen, J.D., Hangaard, S., Buus, A.A.Ø., Laursen, M., Hejlesen, O.K., El-Galaly, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961305/
https://www.ncbi.nlm.nih.gov/pubmed/33746422
http://dx.doi.org/10.1016/j.jor.2021.03.001
Descripción
Sumario:BACKGROUND: Revision TKA is a serious adverse event with substantial consequences for the patient. As revision is becoming increasingly common in patients under 65 years, the need for improved preoperative patient selection is imminently needed. Therefore, this study aimed to identify the most important factors of early revision and to develop a prediction model of early revision including assessment of the effect of incorporating data on patient-reported outcome measures (PROMs). MATERIAL AND METHODS: A cohort of 538 patients undergoing primary TKA was included. Multiple logistic regression using forward selection of variables was applied to identify the best predictors of early revision and to develop a prediction model. The model was internally validated with stratified 5-fold cross-validation. This procedure was repeated without including data on PROMs to develop a model for comparison. The models were evaluated on their discriminative capacity using area under the receiver operating characteristic curve (AUC). RESULTS: The most important factors of early revision were age (OR 0.63 [0.42, 0.95]; P = 0.03), preoperative EQ-5D (OR 0.07 [0.01, 0.51]; P = 0.01), and number of comorbidities (OR 1.01 [0.97, 1.25]; P = 0.15). The AUCs of the models with and without PROMs were 0.65 and 0.61, respectively. The difference between the AUCs was not statistically significant (P = 0.32). CONCLUSIONS: Although more work is needed in order to reach a clinically meaningful quality of the predictions, our results show that the inclusion of PROMs seems to improve the quality of the prediction model.