Cargando…
Temporal and Spatial Nearest Neighbor Values Based Missing Data Imputation in Wireless Sensor Networks
Data missing is a common problem in wireless sensor networks. Currently, to ensure the performance of data processing, making imputation for the missing data is the most common method before getting into sensor data analysis. In this paper, the temporal and spatial nearest neighbor values-based miss...
Autores principales: | Deng, Yulong, Han, Chong, Guo, Jian, Sun, Lijuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961379/ https://www.ncbi.nlm.nih.gov/pubmed/33806481 http://dx.doi.org/10.3390/s21051782 |
Ejemplares similares
-
Nearest neighbor imputation algorithms: a critical evaluation
por: Beretta, Lorenzo, et al.
Publicado: (2016) -
Cervical cancer detection using K nearest neighbor imputer and stacked ensemble learningmodel
por: Chen, Xiaoyuan, et al.
Publicado: (2023) -
Distance-Constraint k-Nearest Neighbor Searching in Mobile Sensor Networks
por: Han, Yongkoo, et al.
Publicado: (2015) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Dimensionality reduction with unsupervised nearest neighbors
por: Kramer, Oliver
Publicado: (2013)