Cargando…
Classification of Hemodynamics Scenarios from a Public Radar Dataset Using a Deep Learning Approach
Contact-free sensors offer important advantages compared to traditional wearables. Radio-frequency sensors (e.g., radars) offer the means to monitor cardiorespiratory activity of people without compromising their privacy, however, only limited information can be obtained via movement, traditionally...
Autores principales: | Slapničar, Gašper, Wang, Wenjin, Luštrek, Mitja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961385/ https://www.ncbi.nlm.nih.gov/pubmed/33800716 http://dx.doi.org/10.3390/s21051836 |
Ejemplares similares
-
Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network
por: Slapničar, Gašper, et al.
Publicado: (2019) -
Machine Learning for Analyzing Non-Countermeasure Factors Affecting Early Spread of COVID-19
por: Janko, Vito, et al.
Publicado: (2021) -
Radar Recorded Child Vital Sign Public Dataset and Deep Learning-Based Age Group Classification Framework for Vehicular Application
por: Yoo, Sungwon, et al.
Publicado: (2021) -
Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification
por: Wang, Hengbin, et al.
Publicado: (2023) -
What Actually Works for Activity Recognition in Scenarios with Significant Domain Shift: Lessons Learned from the 2019 and 2020 Sussex-Huawei Challenges †
por: Kalabakov, Stefan, et al.
Publicado: (2022)