Cargando…
Machine Learning Approach to Predict the Probability of Recurrence of Renal Cell Carcinoma After Surgery: Prediction Model Development Study
BACKGROUND: Renal cell carcinoma (RCC) has a high recurrence rate of 20% to 30% after nephrectomy for clinically localized disease, and more than 40% of patients eventually die of the disease, making regular monitoring and constant management of utmost importance. OBJECTIVE: The objective of this st...
Autores principales: | Kim, HyungMin, Lee, Sun Jung, Park, So Jin, Choi, In Young, Hong, Sung-Hoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961397/ https://www.ncbi.nlm.nih.gov/pubmed/33646127 http://dx.doi.org/10.2196/25635 |
Ejemplares similares
-
Machine learning-based prediction model for late recurrence after surgery in patients with renal cell carcinoma
por: Kim, Hyung Min, et al.
Publicado: (2022) -
Machine learning prediction of dropping out of outpatients with alcohol use disorders
por: Park, So Jin, et al.
Publicado: (2021) -
Machine learning based prediction for oncologic outcomes of renal cell carcinoma after surgery using Korean Renal Cell Carcinoma (KORCC) database
por: Kim, Jung Kwon, et al.
Publicado: (2023) -
Machine learning approach for prediction of hearing preservation in vestibular schwannoma surgery
por: Cha, Dongchul, et al.
Publicado: (2020) -
Machine Learning Enables Accurate Prediction of Asparagine Deamidation Probability and Rate
por: Delmar, Jared A., et al.
Publicado: (2020)