Cargando…
Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961438/ https://www.ncbi.nlm.nih.gov/pubmed/33800715 http://dx.doi.org/10.3390/polym13050805 |
_version_ | 1783665260836683776 |
---|---|
author | Xing, Wenjin Ghahfarokhi, Amin Jamshidi Xie, Chaoming Naghibi, Sanaz Campbell, Jonathan A. Tang, Youhong |
author_facet | Xing, Wenjin Ghahfarokhi, Amin Jamshidi Xie, Chaoming Naghibi, Sanaz Campbell, Jonathan A. Tang, Youhong |
author_sort | Xing, Wenjin |
collection | PubMed |
description | Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle–hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance. |
format | Online Article Text |
id | pubmed-7961438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79614382021-03-17 Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers Xing, Wenjin Ghahfarokhi, Amin Jamshidi Xie, Chaoming Naghibi, Sanaz Campbell, Jonathan A. Tang, Youhong Polymers (Basel) Article Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle–hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance. MDPI 2021-03-06 /pmc/articles/PMC7961438/ /pubmed/33800715 http://dx.doi.org/10.3390/polym13050805 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xing, Wenjin Ghahfarokhi, Amin Jamshidi Xie, Chaoming Naghibi, Sanaz Campbell, Jonathan A. Tang, Youhong Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers |
title | Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers |
title_full | Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers |
title_fullStr | Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers |
title_full_unstemmed | Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers |
title_short | Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers |
title_sort | mechanical properties of a supramolecular nanocomposite hydrogel containing hydroxyl groups enriched hyper-branched polymers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961438/ https://www.ncbi.nlm.nih.gov/pubmed/33800715 http://dx.doi.org/10.3390/polym13050805 |
work_keys_str_mv | AT xingwenjin mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers AT ghahfarokhiaminjamshidi mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers AT xiechaoming mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers AT naghibisanaz mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers AT campbelljonathana mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers AT tangyouhong mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers |