Cargando…

Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers

Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and p...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Wenjin, Ghahfarokhi, Amin Jamshidi, Xie, Chaoming, Naghibi, Sanaz, Campbell, Jonathan A., Tang, Youhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961438/
https://www.ncbi.nlm.nih.gov/pubmed/33800715
http://dx.doi.org/10.3390/polym13050805
_version_ 1783665260836683776
author Xing, Wenjin
Ghahfarokhi, Amin Jamshidi
Xie, Chaoming
Naghibi, Sanaz
Campbell, Jonathan A.
Tang, Youhong
author_facet Xing, Wenjin
Ghahfarokhi, Amin Jamshidi
Xie, Chaoming
Naghibi, Sanaz
Campbell, Jonathan A.
Tang, Youhong
author_sort Xing, Wenjin
collection PubMed
description Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle–hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance.
format Online
Article
Text
id pubmed-7961438
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79614382021-03-17 Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers Xing, Wenjin Ghahfarokhi, Amin Jamshidi Xie, Chaoming Naghibi, Sanaz Campbell, Jonathan A. Tang, Youhong Polymers (Basel) Article Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle–hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance. MDPI 2021-03-06 /pmc/articles/PMC7961438/ /pubmed/33800715 http://dx.doi.org/10.3390/polym13050805 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xing, Wenjin
Ghahfarokhi, Amin Jamshidi
Xie, Chaoming
Naghibi, Sanaz
Campbell, Jonathan A.
Tang, Youhong
Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
title Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
title_full Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
title_fullStr Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
title_full_unstemmed Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
title_short Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
title_sort mechanical properties of a supramolecular nanocomposite hydrogel containing hydroxyl groups enriched hyper-branched polymers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961438/
https://www.ncbi.nlm.nih.gov/pubmed/33800715
http://dx.doi.org/10.3390/polym13050805
work_keys_str_mv AT xingwenjin mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers
AT ghahfarokhiaminjamshidi mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers
AT xiechaoming mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers
AT naghibisanaz mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers
AT campbelljonathana mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers
AT tangyouhong mechanicalpropertiesofasupramolecularnanocompositehydrogelcontaininghydroxylgroupsenrichedhyperbranchedpolymers