Cargando…
Microstructure Refinement of a Transformation-Induced Plasticity High-Entropy Alloy
High-entropy alloys (HEAs) have attracted extensive interest due to their unprecedented structure and mechanical performance. We recently proposed a series of novel corich twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) HEAs with superior tensile properties at room te...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961501/ https://www.ncbi.nlm.nih.gov/pubmed/33806373 http://dx.doi.org/10.3390/ma14051196 |
Sumario: | High-entropy alloys (HEAs) have attracted extensive interest due to their unprecedented structure and mechanical performance. We recently proposed a series of novel corich twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) HEAs with superior tensile properties at room temperature; however, the hot deformation behavior has not been reported. Here, we investigated the dynamic recrystallization behavior and grain refinement of a representative TRIP-HEA, compressed at temperatures of 1123–1273 K with strain rates of 0.1–0.001 s(−1). We characterized the impact of the temperature and strain rate on the grain structure evolution. A constitutive equation was constructed to reveal the correlations between the flow stress, strain rate, temperature, and strain. The apparent activation energy was estimated to be ~385.7 kJ/mol. The discontinuous dynamic recrystallization played an important role in the grain refinement, particularly at a relatively higher temperature and a lower strain rate, and the volume fraction and morphology of the recrystallized grains exhibited a strong dependency on the Zener–Hollomon parameter. The study provides guidelines for the grain refinement of HEAs through thermomechanical processing. |
---|