Cargando…
Multi-U-Net: Residual Module under Multisensory Field and Attention Mechanism Based Optimized U-Net for VHR Image Semantic Segmentation
As the acquisition of very high resolution (VHR) images becomes easier, the complex characteristics of VHR images pose new challenges to traditional machine learning semantic segmentation methods. As an excellent convolutional neural network (CNN) structure, U-Net does not require manual interventio...
Autores principales: | Ran, Si, Ding, Jianli, Liu, Bohua, Ge, Xiangyu, Ma, Guolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961556/ https://www.ncbi.nlm.nih.gov/pubmed/33807525 http://dx.doi.org/10.3390/s21051794 |
Ejemplares similares
-
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI
por: Zhang, Jian, et al.
Publicado: (2023) -
Feature Pyramid U-Net with Attention for Semantic Segmentation of Forward-Looking Sonar Images
por: Zhao, Dongdong, et al.
Publicado: (2022) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
APU-Net: An Attention Mechanism Parallel U-Net for Lung Tumor Segmentation
por: Zhou, Tao, et al.
Publicado: (2022)