Cargando…

Dual Laser Beam Processing of Semiconducting Thin Films by Excited State Absorption

We present a unique dual laser beam processing approach based on excited state absorption by structuring 200 nm thin zinc oxide films sputtered on fused silica substrates. The combination of two pulsed nanosecond-laser beams with different photon energies—one below and one above the zinc oxide band...

Descripción completa

Detalles Bibliográficos
Autores principales: Wenisch, Christoph, Engel, Sebastian, Gräf, Stephan, Müller, Frank A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961574/
https://www.ncbi.nlm.nih.gov/pubmed/33800908
http://dx.doi.org/10.3390/ma14051256
Descripción
Sumario:We present a unique dual laser beam processing approach based on excited state absorption by structuring 200 nm thin zinc oxide films sputtered on fused silica substrates. The combination of two pulsed nanosecond-laser beams with different photon energies—one below and one above the zinc oxide band gap energy—allows for a precise, efficient, and homogeneous ablation of the films without substrate damage. Based on structuring experiments in dependence on laser wavelength, pulse fluence, and pulse delay of both laser beams, a detailed concept of energy transfer and excitation processes during irradiation was developed. It provides a comprehensive understanding of the thermal and electronic processes during ablation. To quantify the efficiency improvements of the dual-beam process compared to single-beam ablation, a simple efficiency model was developed.