Cargando…
A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification
Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has recently sparked the interest in applying deep learning in hyperspectral image classification. However, most deep learning methods for hypersp...
Autores principales: | Hu, Xiang, Yang, Wenjing, Wen, Hao, Liu, Yu, Peng, Yuanxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961775/ https://www.ncbi.nlm.nih.gov/pubmed/33802533 http://dx.doi.org/10.3390/s21051751 |
Ejemplares similares
-
CAEVT: Convolutional Autoencoder Meets Lightweight Vision Transformer for Hyperspectral Image Classification
por: Zhang, Zhiwen, et al.
Publicado: (2022) -
Plant Species Classification Based on Hyperspectral Imaging via a Lightweight Convolutional Neural Network Model
por: Liu, Keng-Hao, et al.
Publicado: (2022) -
CCT: Lightweight compact convolutional transformer for lung disease CT image classification
por: Sun, Weiwei, et al.
Publicado: (2022) -
Lightweight 3D Dense Autoencoder Network for Hyperspectral Remote Sensing Image Classification
por: Bai, Yang, et al.
Publicado: (2023) -
A 3D-2D Convolutional Neural Network and Transfer Learning for Hyperspectral Image Classification
por: Nyabuga, Douglas Omwenga, et al.
Publicado: (2021)