Cargando…
Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process
In recent years, deep neural networks have shown significant progress in computer vision due to their large generalization capacity; however, the overfitting problem ubiquitously threatens the learning process of these highly nonlinear architectures. Dropout is a recent solution to mitigate overfitt...
Autores principales: | Saffari, Mohsen, Khodayar, Mahdi, Ebrahimi Saadabadi, Mohammad Saeed, Sequeira, Ana F., Cardoso, Jaime S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961777/ https://www.ncbi.nlm.nih.gov/pubmed/33800810 http://dx.doi.org/10.3390/s21051846 |
Ejemplares similares
-
Kernel Partial Least Squares Feature Selection Based on Maximum Weight Minimum Redundancy
por: Liu, Xiling, et al.
Publicado: (2023) -
Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
por: Radovic, Milos, et al.
Publicado: (2017) -
PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection
por: Wang, Jing, et al.
Publicado: (2013) -
Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm
por: Wang, ShaoPeng, et al.
Publicado: (2016) -
Reduce Surface Electromyography Channels for Gesture Recognition by Multitask Sparse Representation and Minimum Redundancy Maximum Relevance
por: Qu, Yali, et al.
Publicado: (2021)