Cargando…
Characterization of a New Lightened Gypsum-Based Material Reinforced with Fibers
This paper shows the characterization of a new lightened gypsum-based material for use in buildings. A plaster material has been designed with a polymeric compound based on polyvinyl acetate, bicarbonate and a boric acid solution, which reduce the density and thermal conductivity by up to 20% and 30...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961796/ https://www.ncbi.nlm.nih.gov/pubmed/33806536 http://dx.doi.org/10.3390/ma14051203 |
Sumario: | This paper shows the characterization of a new lightened gypsum-based material for use in buildings. A plaster material has been designed with a polymeric compound based on polyvinyl acetate, bicarbonate and a boric acid solution, which reduce the density and thermal conductivity by up to 20% and 30%, respectively. In addition, tests have been carried out with the lightened plaster material reinforced with glass (GF), basalt (BF), polypropylene (PPF) and wood (WF) fibers. A significant improvement in mechanical properties was achieved. All samples obtained resistance values greater than 2 MPa in flexion and 3 MPa in compression. Physico-chemical analysis were also carried out. The study is completed with a statistical analysis, where confidence intervals have been obtained for the mean at 95% confidence for each of the physical properties studied. |
---|